Skip to main content
Log in

Higher Hydrocarbons Synthesis from CO2 Hydrogenation Over K- and La-Promoted Fe–Cu/TiO2 Catalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Developing selective and active catalyst is critical for CO2 hydrogenation to higher hydrocarbons especially C5+ products. The present work reports on the significant promoting effects of K and La addition to Fe–Cu/TiO2 catalyst on higher hydrocarbon production from CO2 hydrogenation. The incorporation of both K and La promoters can improve both CO2 hydrogenation activity and selectivity to higher hydrocarbons of Fe-based catalyst. Characterization by temperature-programmed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the presence of K promoter significantly decreased the adsorption of H2, which suppressed the CH4 formation. On the other hand, La addition can promote the moderately adsorbed CO2 species (mainly monodentate carbonate species), which leads to the enhanced C5–C7 selectivity. The simultaneous use of promoters La and K can tailor the H and C coverage on the catalyst surface, which plays an important role in altering product distribution in CO2 hydrogenation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hu B, Guild C, Suib SL (2013) J CO2 Util 1:18–27

    Article  CAS  Google Scholar 

  2. Burghaus U (2009) Catal Today 148(3–4):212–220

    Article  CAS  Google Scholar 

  3. Ma J, Sun N, Zhang X, Zhao N, Xiao F, Wei W, Sun Y (2009) Catal Today 148(3–4):221–231

    Article  CAS  Google Scholar 

  4. Saeidi S, Amin NAS, Rahimpour MR (2014) J CO2 Util 5:66–81

    Article  CAS  Google Scholar 

  5. Jiang X, Koizumi N, Guo X, Song C (2015) Appl Catal B 170–171(0):173–185

    Article  CAS  Google Scholar 

  6. Krishnamoorthy S, Li A, Iglesia E (2002) Catal Lett 80(1–2):77–86

    Article  CAS  Google Scholar 

  7. Riedel T, Schaub G, Jun KW, Lee KW (2001) Ind Eng Chem Res 40(5):1355–1363

    Article  CAS  Google Scholar 

  8. Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) Appl Catal A 373(1–2):112–121

    Article  CAS  Google Scholar 

  9. Lee S-C, Jang J-H, Lee B-Y, Kim J-S, Kang M, Lee S-B, Choi M-J, Choung S-J (2004) J Mol Catal A 210(1–2):131–141

    Article  CAS  Google Scholar 

  10. Li TZ, Yang Y, Zhang CH, Tao ZC, Wan HJ, An X, Xiang HW, Li YW (2007) J Nat Gas Chem 16(3):244–251

    Article  CAS  Google Scholar 

  11. Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Fuel Process Technol 118:117–124

    Article  CAS  Google Scholar 

  12. Zhang Q, Kang J, Wang Y (2010) ChemCatChem 2(9):1030–1058

    Article  CAS  Google Scholar 

  13. Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) J CO2 Util 3–4:102–106

    Article  CAS  Google Scholar 

  14. Centi G, Perathoner S (2009) Catal Today 148(3–4):191–205

    Article  CAS  Google Scholar 

  15. Ghenciu AF (2002) Curr Opin Solid State Mater Sci 6:389–399

    Article  Google Scholar 

  16. Tanaka Y, Utaka T, Kikuchi R, Sasaki K, Eguchi K (2003) Appl Catal A 238:11–18

    Article  CAS  Google Scholar 

  17. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40(7):3703–3727

    Article  CAS  Google Scholar 

  18. Satthawong R, Koizumi N, Song C, Prasassarakich P (2013) Top Catal 57(6–9):588–594

    Google Scholar 

  19. Rodemerck U, Holeňa M, Wagner E, Smejkal Q, Barkschat A, Baerns M (2013) ChemCatChem 5(7):1948–1955

    Article  CAS  Google Scholar 

  20. Hinchiranan S, Zhang Y, Nagamori S, Vitidsant T, Tsubaki N (2008) Fuel Process Technol 89(4):455–459

    Article  CAS  Google Scholar 

  21. Xiao J, Mao D, Guo X, Yu J (2015) Appl Surf Sci 338(0):146–153

    Article  CAS  Google Scholar 

  22. Satthawong R, Koizumi N, Song C, Prasassarakich P (2015) Catal Today 251:34–40

    Article  CAS  Google Scholar 

  23. Barrault J, Guilleminot A, Achard JC, Paul-Boncour V, Percheron-Guegan A (1986) Appl Catal 21(2):307–312

    Article  CAS  Google Scholar 

  24. Nam S-S, Kishan G, Lee M-W, Choi M-J, Lee K-W (2000) Appl Organomet Chem 14(12):794–798

    Article  CAS  Google Scholar 

  25. Cubeiro ML, Morales H, Goldwasser MR, Pérez-Zurita MJ, González-Jiménez F (2000) React Kinet Catal Lett 69(2):259–264

    Article  CAS  Google Scholar 

  26. Riedel T, Claeys M, Schulz H, Schaub G, Nam S-S, Jun K-W, Kishan M-JCG, Lee K-W (1999) Appl Catal A 186:201–213

    Article  CAS  Google Scholar 

  27. Martra G (2000) Appl Catal A 200(1–2):275–285

    Article  CAS  Google Scholar 

  28. Busca G, Lorenzelli V (1982) Mater Chem 7(1):89–126

    Article  CAS  Google Scholar 

  29. Montanari T, Castoldi L, Lietti L, Busca G (2011) Appl Catal A 400(1–2):61–69

    Article  CAS  Google Scholar 

  30. Kantschewa M, Albano EV, Etrtl G, Kno¨zinger H (1983) Appl Catal 8(1):71–84

    Article  CAS  Google Scholar 

  31. Hirano T (1986) Appl Catal 26:65–79

    Article  CAS  Google Scholar 

  32. Tsuji H, Okamura-Yoshida A, Shishido T, Hattori H (2003) Langmuir 19(21):8793–8800

    Article  CAS  Google Scholar 

  33. Zowtiak JM, Bartholomew CH (1983) J Catal 83(1):107–120

    Article  CAS  Google Scholar 

  34. Bozso F, Ertl G, Grunze M, Weiss M (1977) Appl Surf Sci 1(1):103–119

    Article  CAS  Google Scholar 

  35. Chen C-S, Cheng W-H, Lin S-S (2003) Appl Catal A 238(1):55–67

    Article  CAS  Google Scholar 

  36. Nie X, Wang H, Janik MJ, Guo X, Song C (2016) J Phys Chem C 120(17):9364–9373

    Article  CAS  Google Scholar 

  37. Santiago-Rodríguez Y, Barreto-Rodríguez E, Curet-Arana MC (2016) J Mol Catal A 423:319–332

    Article  CAS  Google Scholar 

  38. Nie X, Wang H, Janik MJ, Chen Y, Guo X, Song C (2017) J Phys Chem C 121(24):13164–13174

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Pennsylvania State University through the EMS Energy Institute and the Penn State Institute of Energy and the Environment. One of the authors, Nuttakorn Boreriboon, acknowledges the financial support from the Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program Scholarship. We are grateful for the helpful discussion and assistance provided by Wenjia Wang from Clean Fuels and Catalysis Program (CFCP) in the EMS Energy Institute at Penn State.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunshan Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boreriboon, N., Jiang, X., Song, C. et al. Higher Hydrocarbons Synthesis from CO2 Hydrogenation Over K- and La-Promoted Fe–Cu/TiO2 Catalysts. Top Catal 61, 1551–1562 (2018). https://doi.org/10.1007/s11244-018-1023-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-1023-1

Keywords

Navigation