Skip to main content
Log in

Modification of the Chemisorption Properties of Epitaxial Delafossite CuFeO2 Thin Films by Substituting Fe for Ga in the Crystal Structure

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Films of CuFeO2 and CuFe0.75Ga0.25O2 were grown over sapphire substrates in high vacuum using a pulsed laser deposition technique. The films grew with rhombohedral delafossite structure and highly epitaxial in the c-direction. Samples were characterized by X-ray diffraction, Raman spectroscopy and atomic force microscopy. Surface of the films were inspected with X-ray and UV photoelectron spectroscopy. Adsorption of CO2 and H2O was studied by a thermal program desorption technique. In both films Cu and Fe were exposed at the surface–gas interface. X-ray photoelectron data indicated that CO2 adsorbs preferentially at Cu sites forming a similar coordination to CuCO3. The energy for desorption of CO2 and H2O was estimated to be 30 kcal mol−1 (1.3 eV atom−1) for CuFeO2 and 36 kcal mol−1 (1.6 eV mol−1) for CuFe0.75Ga0.25O2. UV photoelectron spectroscopy showed that the valence band of the CuFeO2 delafossite oxides is modified with the substitution of Fe by Ga in the crystal lattice. The semiconductor band gap of CuFeO2 delafossite oxides also increased from 1.2 to 1.5 eV due to the substitution of Fe by Ga in the crystal lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Angelis-Dimakis A, Biberacher M, Dominguez J, Fiorese G, Gadocha S, Gnansounou E, Guariso G, Kartalidis A, Panichelli L, Pinedo I, Robba M (2011) Methods and tools to evaluate the availability of renewable energy sources. Renew Sustain Energy Rev 15:1182–1200

    Article  Google Scholar 

  2. Andrews J, Shabani B (2012) Re-envisioning the role of hydrogen in a sustainable energy economy. Int J Hydrogen Energy 37:1184–1203

    Article  CAS  Google Scholar 

  3. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. Nature 414:332–337

    Article  CAS  PubMed  Google Scholar 

  4. Lao SJ, Qin HY, Ye LQ, Liu BH, Li ZP (2010) A development of direct hydrazine/hydrogen peroxide fuel cell. J Power Sources 195:4135–4138

    Article  CAS  Google Scholar 

  5. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  PubMed  Google Scholar 

  6. Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–344

    Article  PubMed  Google Scholar 

  7. Tsuboi N, Tosaka K, Kobayashi S, Kato K, Kaneko F (2008) Preparation of delafossite-type CuYO2 films by solution method. Jpn J Appl Phys 47:588

    Article  CAS  Google Scholar 

  8. Ohashi M, Iida Y, Morikawa H (2002) Preparation of CuAlO2 films by wet chemical synthesis. J Am Ceram Soc 85:270–272

    Article  CAS  Google Scholar 

  9. Tonooka K, Shimokawa K, Nishimura O (2002) Properties of copper–aluminum oxide films prepared by solution methods. Thin Solid Films 411:129–133

    Article  CAS  Google Scholar 

  10. Beznosikov BV, Aleksandrov KS (2009) Predictions of compounds in the family of delafossites. J Struct Chem 50:102–107

    Article  CAS  Google Scholar 

  11. Read CG, Park Y, Choi KS (2012) Electrochemical synthesis of p-type CuFeO2 electrodes for use in a photoelectrochemical cell. J Phys Chem Lett 3:1872–1876

    Article  CAS  PubMed  Google Scholar 

  12. Kato S, Fujimaki R, Ogasawara M, Wakabayashi T, Nakahara Y, Nakata S (2009) Oxygen storage capacity of CuMO2 (M = Al, Fe, Mn, Ga) with a delafossite-type structure. Appl Catal B 89:183–188

    Article  CAS  Google Scholar 

  13. Rojas S, Joshi T, Wheatley RA, Sarabia M, Borisov P, Lederman D, Cabrera AL (2016) Optical detection of carbon dioxide adsorption on epitaxial CuFe1–xGaxO2 delafossite film grown by pulse laser deposition. Surf Sci 648:23–28

    Article  CAS  Google Scholar 

  14. Joshi T, Senty TR, Trappen R, Zhou J, Chen S, Ferrari P, Borisov P, Song X, Holcomb MB, Bristow AD, Cabrera AL, Lederman D (2015) Structural and magnetic properties of epitaxial delafossite CuFeO2 thin films grown by pulsed laser deposition. J Appl Phys 117:013908–013916

    Article  CAS  Google Scholar 

  15. Wheatley RA, Rojas S, Oppolzer C, Joshi T, Borisov P, Lederman D, Cabrera AL (2017) Comparative study of the structural and optical properties of epitaxial CuFeO2 and CuFe1–xGaxO2 delafossite thin films grown by pulsed laser deposition methods. Thin Solid Films 626:110–116

    Article  CAS  Google Scholar 

  16. Aktas O, Truong KD, Otani T, Balakrishnan G, Clouter MJ, Kimura T, Quirion G (2011) Raman scattering study of delafossite magnetoelectric multiferroic compounds: CuFeO2 and CuCrO2. J Phys Condens Matter 24:036003–036014

    Article  CAS  PubMed  Google Scholar 

  17. Pellicer-Porres J, Segura A, Ferrer-Roca C, Martinez-Garcia D, Sans JA, Martinez E, Itié JP, Polian A, Baudelet F, Muñoz A, Rodríguez-Hernández P (2004) Structural evolution of the CuGaO2 delafossite under high pressure. Phys Rev B 69:024109

    Article  CAS  Google Scholar 

  18. Benko FA, Koffyberg FP (1987) Opto-electronic properties of p-and n-type delafossite, CuFeO2. J Phys Chem Solids 48:431–434

    Article  CAS  Google Scholar 

  19. Ong KP, Bai K, Blaha P, Wu P (2007) Electronic structure and optical properties of AFeO2 (A = Ag, Cu) within GGA calculations. Chem Mater 19:634–640

    Article  CAS  Google Scholar 

  20. Biesinger MC, Lau LW, Gerson AR, Smart RSC (2010) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl Surf Sci 257:887–898

    Article  CAS  Google Scholar 

  21. Ghijsen J, Tjeng LH, Van Elp J, Eskes H, Westerink J, Sawatzky GA, Czyzyk MT (1988) Electronic structure of Cu2O and CuO. Phys Rev B 38:11322–11330

    Article  CAS  Google Scholar 

  22. Poulston S, Parlett PM, Stone P, Bowker M (1996) Surface oxidation and reduction of CuO and Cu2O studied using XPS and XAES. Surf Interface Anal 24:811–820

    Article  CAS  Google Scholar 

  23. Biesinger MC, Payne BP, Grosvenor AP, Lau LW, Gerson AR, Smart RSC (2011) Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl Surf Sci 257:2717–2730

    Article  CAS  Google Scholar 

  24. Paparazzo E (1987) XPS and auger spectroscopy studies on mixtures of the oxides SiO2, Al2O3, Fe2O3 and Cr2O3. J Electron Spectrosc Relat Phenom 43:97–112

    Article  CAS  Google Scholar 

  25. Hawn DD, DeKoven BM (1987) Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf Interface Anal 10:63–74

    Article  CAS  Google Scholar 

  26. Christopher J, Swamy CS (1992) Catalytic activity and XPS investigation of dalofossite oxides, CuMO2 (M = Al, Cr or Fe). J Mater Sci 27:1353–1356

    Article  CAS  Google Scholar 

  27. Freund HJ, Roberts MW (1996) Surface chemistry of carbon dioxide. Surf Sci Rep 25:225–273

    Article  Google Scholar 

  28. Ramos-Moore E, Diaz-Droguett DE, Spring P, Evans JT, Cabrera AL (2011) Generation of oxygen vacancies in the surface of ferroelectric Pb (Nb, Zr, Ti) O3. Appl Surf Sci 257:4695–4698

    Article  CAS  Google Scholar 

  29. Nahar S, Zain MFM, Kadhum AAH, Hasan HA, Hasan MR (2017) Advances in photocatalytic CO2 reduction with water: a review. Materials 10:629–655

    Article  PubMed Central  Google Scholar 

  30. Redhead PA (1962) Thermal desorption of gases. Vacuum 12:203–211

    Article  CAS  Google Scholar 

  31. Cabrera AL (1990) Kinetic parameters obtained from area integration of single peak thermal desorption spectra. J Chem Phys 93:2854–2858

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work at PUC was supported by FONDECyT 1130372 and Anillo ACT1409. Support from the American Chemical Society (PRF #56642-ND10) is also acknowledged. Thanks are due to WVU Shared Research Facilities. Thanks are due to M J Retamal for AFM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Cabrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojas, S., Joshi, T., Wang, Q. et al. Modification of the Chemisorption Properties of Epitaxial Delafossite CuFeO2 Thin Films by Substituting Fe for Ga in the Crystal Structure. Top Catal 61, 1193–1200 (2018). https://doi.org/10.1007/s11244-018-0919-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-018-0919-0

Keywords

Navigation