Skip to main content
Log in

Oxygen Adsorption and Low-Temperature CO Oxidation on a Nanoporous Au Catalyst: Reaction Mechanism and Foreign Metal Effects

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

To further our understanding of the role of trace impurities of the second metal in the catalytic performance of unsupported, nanoporous Au (NPG) catalysts, in particular for the activation of O2, we have prepared a NPG catalyst by electrochemical leaching of Cu from a AuCu alloy and investigated its behavior in the CO oxidation reaction. The structural and chemical properties of the as-prepared catalyst as well as that after reaction for 1000 min were characterized by scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The nature of the surface oxygen species and the oxygen storage capacity were investigated and quantified by multi-pulse experiments in a temporal analysis of products (TAP) reactor. The catalytic behavior in the low-temperature CO oxidation reaction was evaluated both in a TAP reactor under dynamic vacuum conditions and in a conventional micro-reactor under atmospheric pressure. We discuss implications of these results and of similar data obtained previously on a Ag-containing NPG catalyst on the reaction mechanism and on the role of the second metal in the reaction and its impact on the reaction characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  2. Haruta M (1997) Catal Surv Jap 1:61–73

    Article  CAS  Google Scholar 

  3. Haruta M (2002) Cattech 6:102–115

    Article  CAS  Google Scholar 

  4. Bond GC, Louis C, Thompson DT (2007) Catalysis by gold. Imperial Press, London

    Google Scholar 

  5. Zielasek V, Jürgens B, Schulz C, Biener J, Biener MM, Hamza AV, Bäumer M (2006) Angew Chem Int Ed 45:8241–8244

    Article  CAS  Google Scholar 

  6. Xu C, Xu X, Su J, Ding Y (2007) J Catal 252:243–248

    Article  CAS  Google Scholar 

  7. Wittstock A, Neumann B, Schaefer A, Dumbuya K, Kübel C, Biener MM, Zielasek V, Steinrück HP, Gottfried JM, Biener J, Hamza A, Bäumer M (2009) J Phys Chem C 113:5593–5600

    Article  CAS  Google Scholar 

  8. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319–322

    Article  CAS  Google Scholar 

  9. Krajci M, Kameoka S, Tsai AP (2017) J Chem Phys 147:044713–044713-14

    Article  Google Scholar 

  10. Li D, Zhu Y, Wang H, Ding Y (2013) Sci Rep 3:3015–3015-7

    Article  Google Scholar 

  11. Deronzier T, Morfin F, Lomello M, Rousset J-L (2014) J Catal 311:221–229

    Article  CAS  Google Scholar 

  12. Wittstock A, Wichmann A, Biener J, Baumer M (2011) Faraday Discuss 152:87–98

    Article  CAS  Google Scholar 

  13. Kosuda KM, Wittstock A, Friend CM, Bäumer M (2012) Angew Chem Int Ed 51:1698–1701

    Article  CAS  Google Scholar 

  14. Wang LC, Stowers KJ, Zugic B, Personick ML, Biener MM, Biener J, Friend CM, Madix RJ (2015) J Catal 329:78–86

    Article  CAS  Google Scholar 

  15. Pedireddy S, Lee HK, Tjiu WW, Phang IY, Tan HR, Chua SQ, Troadec C, Ling XY (2014) Nat Commun 5:4947–4947-9

    Article  CAS  Google Scholar 

  16. Xu H, Shen K, Liu S, Zhang L, Wang X, Qin J, Wang W (2016) J Phys Chem C 120:25296–25305

    Article  CAS  Google Scholar 

  17. Yan M, Jin T, Ishikawa Y, Minato T, Fujita T, Chen LY, Bao M, Asao N, Chen MW, Yamamoto Y (2012) J Am Chem Soc 134:17536–17542

    Article  CAS  Google Scholar 

  18. Takale BS, Feng X, Lu Y, Bao M, Jin T, Minato T, Yamamoto Y (2016) J Am Chem Soc 138:10356–10364

    Article  CAS  Google Scholar 

  19. Xu C, Su J, Xu X, Liu P, Zhao H, Tian F, Ding Y (2007) J Am Chem Soc 129:42–43

    Article  CAS  Google Scholar 

  20. Wang LC, Jin H-J, Widmann D, Weissmüller J, Behm RJ (2011) J Catal 278:219–227

    Article  CAS  Google Scholar 

  21. Wang LC, Zhong Y, Widmann D, Weissmüller J, Behm RJ (2012) ChemCatChem 4:251–259

    Article  CAS  Google Scholar 

  22. Fujita T, Guan P, McKenna K, Lang X, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J, Chen M (2012) Nature Mater 11:775–780

    Article  CAS  Google Scholar 

  23. Liu P, Guan P, Hirata A, Zhang L, Chen L, Wen Y, Ding Y, Fujita T, Erlebacher J, Chen M (2016) Adv Mater 28:1753–1759

    Article  CAS  Google Scholar 

  24. Wang LC, Friend CM, Fushimi R, Madix RJ (2016) Faraday Discuss 188:57–67

    Article  CAS  Google Scholar 

  25. Wang LC, Personick ML, Karakalos S, Fushimi R, Friend CM, Madix RJ (2016) J Catal 344:778–783

    Article  CAS  Google Scholar 

  26. Montemore MM, Madix RJ, Kaxiras E (2016) J Phys Chem C 120:16636–16640

    Article  CAS  Google Scholar 

  27. Kameoka S, Tanabe T, Miyamoto K, Tsai AP (2016) J Chem Phys 144:034703–034703-8

    Article  Google Scholar 

  28. Krajci M, Kameoka S, Tsai AP (2016) J Chem Phys 145:084703–084703-6

    Article  Google Scholar 

  29. Zugic B, Wang LC, Heine C, Zakharov DN, Lechner BAJ, Stach EA, Biener J, Salmeron M, Madix RJ, Friend CM (2017) Nat Mater 16:558–564

    Article  CAS  Google Scholar 

  30. Deronzier T, Morfin F, Massin L, Lomello L, Rousset J-L (2011) Chem Mater 23:5287–5289

    Article  CAS  Google Scholar 

  31. Wang LC, Zhong Y, Yin H, Widmann D, Weissmüller J, Behm RJ (2013) Beilstein J Nanotechnol 4:111–128

    Article  Google Scholar 

  32. Zhong Y, Markmann J, Jin HJ, Ivanisenko Y, Kurmanaeva L, Weissmüller J (2014) Adv Eng Mater 16:389–398

    Article  CAS  Google Scholar 

  33. Trasatti S, Petrii OA (1991) Pure Appl Chem 63:711–734

    Article  CAS  Google Scholar 

  34. Jin HJ, Parida S, Kramer D, Weissmüller J (2008) Surf Sci 602:3588–3594

    Article  CAS  Google Scholar 

  35. Kahlich MJ, Gasteiger HA, Behm RJ (1997) J Catal 171:93–105

    Article  CAS  Google Scholar 

  36. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) J Catal 197:113

    Article  CAS  Google Scholar 

  37. Leppelt R, Hansgen D, Widmann D, Häring T, Bräth G, Behm RJ (2007) Rev Sci Instrum 78:104103–1-104103-9

    Article  CAS  Google Scholar 

  38. Gleaves JT, Yablonskii GS, Phanawadee P, Schuurman Y (1997) Appl Catal A 160:55–88

    Article  CAS  Google Scholar 

  39. Parida S, Kramer D, Volkert CA, Rösner H, Erlebacher J, Weissmüller J (2006) Phys Rev Lett 97:035504–035504-1

    Article  CAS  Google Scholar 

  40. Jin H-J, Wang X-L, Parida S, Wang K, Seo M, Weissmüller J (2009) Nano Lett 10:187–194

    Article  Google Scholar 

  41. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Science 301:935–938

    Article  CAS  Google Scholar 

  42. Deng W, Carpenter C, Yi N, Flytzani-Stephanopoulos M (2007) Top Catal 44:199–208

    Article  CAS  Google Scholar 

  43. Haruta M, Tsubota S, Kobayashi T, Kageyama H, Genet MJ, Delmon B (1993) J Catal 144:175–192

    Article  CAS  Google Scholar 

  44. Boyen H-G, Ethirajan A, Kästle G, Weigl F, Ziemann P, Schmid G, Garnier MG, Büttner M, Oelhafen P (2005) Phys Rev Lett 94:016804-1

    Article  Google Scholar 

  45. Alejo L, Lago R, Pena MA, Fierro JLG (1997) Appl Catal A 162:281–297

    Article  CAS  Google Scholar 

  46. Agrell J, Birgersson H, Boutonnet M, Melian-Cabrera I, Navarro RM, Fierro JLG (2003) J Catal 219:389–403

    Article  CAS  Google Scholar 

  47. Matter PH, Braden DJ, Ozkan US (2004) J Catal 223:340–351

    Article  CAS  Google Scholar 

  48. Dai W-L, Sun Q, Deng J-F, Wu D, Sun Y-H (2001) Appl Surf Sci 177:172–179

    Article  CAS  Google Scholar 

  49. Krekeler T, Straßer AV, Graf M, Wang K, Hartig C, Ritter M, Weissmüller J (2017) Mater Res Lett 5:314–321

    Article  CAS  Google Scholar 

  50. Wachs IE, Madix RJ (1978) J Catal 53:208–227

    Article  CAS  Google Scholar 

  51. Daté M, Haruta M (2001) J Catal 201:221–224

    Article  Google Scholar 

  52. Daté M, Okumura M, Tsubota S, Haruta M (2004) Angew Chem 116:2181–2184

    Article  Google Scholar 

  53. Saavedra J, Doan HA, Pursell CJ, Grabow LC, Chandler BD (2014) Science 345:1599–1602

    Article  CAS  Google Scholar 

  54. Kameoka S, Pang Tsai A (2008) Catal Lett 121:337–341

    Article  CAS  Google Scholar 

  55. Duan H, Xu C (2015) J Catal 332:31–37

    Article  CAS  Google Scholar 

  56. Liu X, Wang A, Zhang T, Su DS, Mou C-Y (2011) Catal Today 160:103–108

    Article  CAS  Google Scholar 

  57. Wang A-Q, Liu J-H, Lin SD, Lin T-S, Mou C-Y (2005) J Catal 233:186–197

    Article  CAS  Google Scholar 

  58. Cunningham DAH, Vogel W, Haruta M (1999) Catal Lett 63:43–47

    Article  CAS  Google Scholar 

  59. Margitfalvi JL, Fasi A, Hegedus M, Lonyi F, Gobolos S, Bogdanchikova N (2002) Catal Today 72:157–169

    Article  CAS  Google Scholar 

  60. Jia CJ, Liu Y, Bongard H, Schüth F (2010) J Am Chem Soc 132:1520–1522

    Article  CAS  Google Scholar 

  61. Wang Y, Lehnert F, Widmann D, Gu D, Schüth F, Behm RJ (2017) Angew Chem Int Ed 56:9597–9602

    Article  CAS  Google Scholar 

  62. Wang Y, Widmann D, Wittmann M, Lehnert F, Gu D, Schüth F, Behm RJ (2017) Catal Sci Technol 7:4145–4161

    Article  CAS  Google Scholar 

  63. Liu Z-P, Hu P, Alavi A (2002) J Am Chem Soc 124:14770–14779

    Article  CAS  Google Scholar 

  64. Lopez N, Janssens TVW, Clausen BS, Xu Y, Mavrikakis M, Bligaard T, Nørskov JK (2004) J Catal 223:232–235

    Article  CAS  Google Scholar 

  65. Janssens TVW, Carlsson A, Puig-Molina A, Clausen BS (2006) J Catal 240:108–113

    Article  CAS  Google Scholar 

  66. Roldan A, Gonzalez S, Ricart JM, Illas F (2009) ChemPhysChem 10:348–351

    Article  CAS  Google Scholar 

  67. Green IX, Tang W, Neurock M, Yates JT (2011) Science 333:736–739

    Article  CAS  Google Scholar 

  68. Liu X, Wang A, Li L, Zhang T, Mou C-Y, Lee JF (2011) J Catal 278:288–296

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Baden-Württemberg Stiftung within the Network ‘Functional Nanostructures’. L.-C. Wang is grateful for a fellowship from the Alexander-von Humboldt-Foundation. We gratefully acknowledge T. Diemant for XPS measurements, U. Hörmann for SEM measurements and S. Blessing for XRD analysis (all Ulm University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. J. Behm.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 250 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L.C., Zhong, Y., Widmann, D. et al. Oxygen Adsorption and Low-Temperature CO Oxidation on a Nanoporous Au Catalyst: Reaction Mechanism and Foreign Metal Effects. Top Catal 61, 446–461 (2018). https://doi.org/10.1007/s11244-017-0881-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-017-0881-2

Keywords

Navigation