Skip to main content

Advertisement

Log in

The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The near ambient pressure X-ray photoelectron spectroscopy set up installed recently at SOLEIL synchrotron facility is used to study the electronic structure of NaCl and NaI saturated solutions formed on a gold substrate. The binding energies of the solution constituents are measured with respect to the Fermi level of the gold substrate. The C1s binding energy of the aliphatic contaminant floating at the surface of the solution is an evidence that the Fermi level in the metal and in the solution are aligned. The use of the Fermi level common energy reference is an added value with respect to previous works realized with micro-jets that were calibrated in energy with respect to vacuum level. We observe that the water valence molecular levels binding energies, and hence the Fermi positioning in the gap of the liquid, the Na+ 2s binding energy and even the work function are independent of the nature of the anions. The secondary electron energy distribution curves show that the work functions of the two solutions are equal within experimental uncertainty. We discuss this point considering the different ion distributions at the surface (related to the different size and polarizability of the anions), and the possible contribution of carbon contaminants. We compare the WF values extracted from the secondary electron edges to alternative measurements using the binding energy of the gas phase O1s or 1b1 spectra (referenced to the gold Fermi level). The ionization energies (referenced to the vacuum level), that we obtain by adding the work function to the measured binding energies, are in good accord with previously published works using micro-jets, obtained, however, at much lower solute concentration. Finally we discuss the origin of the Fermi level pinning in the liquid band gap and consider the possibility that the H+/H2 redox level is aligned with the metal Fermi level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Note that the electrochemical potential in the electrolyte is equivalent to the redox potential, via an energy rescaling, discussed in detail in Refs. [8, 54, 78]. Note also that Fermi level and electrochemical potential are synonymous.

  2. The CH x peak of the NaCl solution is found at a BE ~ 0.4 eV higher than that of the CH x in the NaI solution. Its fwhm is also notably larger (1.55 vs. 1.12 eV). This is due to a “beyond-first-neighbor” chemical shift (e.g. the CH3 moiety in ethoxy groups is shifted up in BE by 0.5 eV with respect to the CH3 component in ethyl moieties [81]). As the carbon in the NaCl solution is much more oxidized than the carbon in the NaI solution, the CH x component broadens and shifts up in energy. Given that the weight of the oxidized carbons in the NaI solution is small, the aliphatic component at 284.8 eV can be used to determine the FL. Issues related to the use of surface contamination carbon to calibrate the BE scale are emphasized in Ref. [59].

  3. We have no explanation for the difference, as the energy resolution is not given in Ref. [52].

  4. The mean inner electrostatic potential energy V0 is calculated to be ~4.3 eV for a saturated NaCl solution in Ref. [69] but, unfortunately, no profile is given.

  5. The secondary electrons that approach the interface from the inside of the liquid have a velocity \(v\) equal to \(v = \sqrt {\frac{{2 \times KE^{in} }}{m}}\) where \(KE^{in}\) is the kinetic energy in the liquid, and m the electron mass. The minimum value of \(KE^{in}\) is the effective potential \(V^{eff}\) referenced to the VL. \(V^{eff}\) is the sum of the mean inner electrostatic potential energy V 0 (Hartree potential) and of the exchange and correlation energy [48]. An ab initio calculation gives a mean inner electrostatic potential energy of 4.3 eV for the saturated NaCl solution [69]. However, there are no estimates of the exchange and correlation energy of liquid water, despite it should be relevant for low energy (≪ 1 keV) electrons. Thus V 0 is a lower bound of \(V^{eff}\).

  6. This may be surprising as, according to Coe [22] the onset of the photoelectron yield should occur at photon energies smaller than the vertical transitions of XPS.

  7. At a working pressure of 5 mbar in the analysis chamber, the Q-pole installed in the second stage of the analyzer pumping system gives the partial pressures of H2O (2 × 10−8 mbar), H2 (3 × 10−9 mbar) and O2 (2 × 10−10 mbar). The main pollutant in the chamber is H2. At a pressure of 6 × 10−9 mbar in the chamber (residual) the partial pressures measured by the Q-pole are 5 × 10−11 mbar for H2O, 6.5 × 10−10 mbar for H2 and <10−13 for O2. An upper bound value of H2 partial pressure is calculated assuming that the partial pressures measured by the Q-pole in the sampled gas are proportional to those in the analysis chamber.

References

  1. Ghosal S, Shbeeb A, Hemminger JC (2000) Surface segregation of bromine in bromide doped NaCl: implications for the seasonal variations in Arctic ozone. Geophys Res Lett 27:1879–1882. doi:10.1029/2000GL011381

    Article  CAS  Google Scholar 

  2. Ghosal S, Hemminger JC, Bluhm H et al (2005) Electron spectroscopy of aqueous solution interfaces reveals surface enhancement of halides. Science 307:563–566. doi:10.1126/science.1106525

    Article  CAS  Google Scholar 

  3. Chandra AP, Gerson AR (2010) The mechanisms of pyrite oxidation and leaching: a fundamental perspective. Surf Sci Rep 65:293–315. doi:10.1016/j.surfrep.2010.08.003

    Article  CAS  Google Scholar 

  4. Chauhan PK, Gadiyar HS (1985) An xps study of the corrosion of cu-10 ni alloy in unpolluted and polluted sea-water; the effect of feso4 addition. Corros Sci 25:55–68. doi:10.1016/0010-938X(85)90088-5

    Article  CAS  Google Scholar 

  5. Juzeliūnas E, Sudavičius A, Jüttner K, Fürbeth W (2003) Study of initial stages of Al–Mg alloy corrosion in water, chloride and Cu(II) environment by a scanning Kelvin probe and XPS. Electrochem Commun 5:154–158. doi:10.1016/S1388-2481(03)00015-8

    Article  Google Scholar 

  6. Shim JJ, Kim JG (2004) Copper corrosion in potable water distribution systems: influence of copper products on the corrosion behavior. Mater Lett 58:2002–2006. doi:10.1016/j.matlet.2003.12.017

    Article  CAS  Google Scholar 

  7. Huber GW, Dumesic JA (2006) An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery. Catal Today 111:119–132. doi:10.1016/j.cattod.2005.10.010

    Article  CAS  Google Scholar 

  8. Trasatti S (1986) The absolute electrode potential: an explanatory note (Recommendations 1986). Pure Appl Chem 58:955–966. doi:10.1351/pac198658070955

    CAS  Google Scholar 

  9. Trasatti S (1991) Structure of the metal/electrolyte solution interface: new data for theory. Electrochim Acta 36:1659–1667. doi:10.1016/0013-4686(91)85023-Z

    Article  CAS  Google Scholar 

  10. Cheng J, Sprik M (2012) Alignment of electronic energy levels at electrochemical interfaces. Phys Chem Chem Phys 14:11245–11267. doi:10.1039/c2cp41652b

    Article  CAS  Google Scholar 

  11. Maier F, Riedel M, Mantel B et al (2000) Origin of surface conductivity in diamond. Phys Rev Lett 85:3472–3475. doi:10.1103/PhysRevLett.85.3472

    Article  CAS  Google Scholar 

  12. Fujishima A, Zhang X, Tryk D (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582. doi:10.1016/j.surfrep.2008.10.001

    Article  CAS  Google Scholar 

  13. Linsebigler AL, Lu G, Yates JT (1995) Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev 95:735–758. doi:10.1021/cr00035a013

    Article  CAS  Google Scholar 

  14. Zhang Z, Yates JT (2012) Band bending in semiconductors: chemical and physical consequences at surfaces and interfaces. Chem Rev 112:5520–5551. doi:10.1021/cr3000626

    Article  CAS  Google Scholar 

  15. Weinhardt L, Blum M, Fuchs O et al (2013) Soft X-ray and electron spectroscopy to determine the electronic structure of materials for photoelectrochemical hydrogen production. J Electron Spectros Relat Phenomena 190:106–112. doi:10.1016/j.elspec.2012.11.015

    Article  CAS  Google Scholar 

  16. Bernas A, Ferradini C, Jay-Gerin J-P (1997) On the electronic structure of liquid water: facts and reflections. Chem Phys 222:151–160. doi:10.1016/S0301-0104(97)00213-9

    Article  CAS  Google Scholar 

  17. Coe JV (2001) Fundamental properties of bulk water from cluster ion data. Int Rev Phys Chem 20:33–58. doi:10.1080/01442350010008589

    Article  CAS  Google Scholar 

  18. Laasonen K, Sprik M, Parrinello M, Car R (1993) Ab initio liquid water. J Chem Phys 99:9080. doi:10.1063/1.465574

    Article  CAS  Google Scholar 

  19. Pham TA, Zhang C, Schwegler E, Galli G (2014) Probing the electronic structure of liquid water with many-body perturbation theory. Phys Rev B 89:060202. doi:10.1103/PhysRevB.89.060202

    Article  Google Scholar 

  20. Gaiduk AP, Zhang C, Gygi F, Galli G (2014) Structural and electronic properties of aqueous NaCl solutions from ab initio molecular dynamics simulations with hybrid density functionals. Chem Phys Lett 604:89–96. doi:10.1016/j.cplett.2014.04.037

    Article  CAS  Google Scholar 

  21. Adriaanse C, Cheng J, Chau V et al (2012) Aqueous redox chemistry and the electronic band structure of liquid water. J Phys Chem Lett 3:3411–3415. doi:10.1021/jz3015293

    Article  CAS  Google Scholar 

  22. Coe JV, Earhart AD, Cohen MH et al (1997) Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J Chem Phys 107:6023–6031. doi:10.1063/1.474271

    Article  CAS  Google Scholar 

  23. Delahay P, Von Burg K (1981) Photoelectron emission spectroscopy of liquid water. Chem Phys Lett 83:250–254. doi:10.1016/0009-2614(81)85456-5

    Article  CAS  Google Scholar 

  24. Delahay P (1982) Photoelectron emission spectroscopy of aqueous solutions. Acc Chem Res 15:40–45. doi:10.1021/ar00074a002

    Article  CAS  Google Scholar 

  25. Winter B, Weber R, Widdra W et al (2004) Full valence band photoemission from liquid water using EUV synchrotron radiation. J Phys Chem A 108:2625–2632. doi:10.1021/jp030263q

    Article  CAS  Google Scholar 

  26. Winter B, Faubel M, Hertel IV et al (2006) Electron binding energies of hydrated H3O+ and OH: photoelectron spectroscopy of aqueous acid and base solutions combined with electronic structure calculations. J Am Chem Soc 128:3864–3865. doi:10.1021/ja0579154

    Article  CAS  Google Scholar 

  27. Seidel R, Thürmer S, Winter B (2011) Photoelectron spectroscopy meets aqueous solution: studies from a vacuum liquid microjet. J Phys Chem Lett 2:633–641. doi:10.1021/jz101636y

    Article  CAS  Google Scholar 

  28. Winter B, Faubel M (2006) Photoemission from liquid aqueous solutions. Chem Rev 106:1176–1211. doi:10.1021/cr040381p

    Article  CAS  Google Scholar 

  29. Weber R, Winter B, Schmidt PM et al (2004) Photoemission from aqueous alkali-metal–iodide salt solutions using EUV synchrotron radiation. J Phys Chem B 108:4729–4736. doi:10.1021/jp030776x

    Article  CAS  Google Scholar 

  30. Winter B, Weber R, Hertel IV et al (2005) Electron binding energies of aqueous alkali and halide ions: EUV photoelectron spectroscopy of liquid solutions and combined ab initio and molecular dynamics calculations. J Am Chem Soc 127:7203–7214. doi:10.1021/ja042908l

    Article  CAS  Google Scholar 

  31. Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158. doi:10.1063/1.478522

    Article  CAS  Google Scholar 

  32. Onsager L, Samaras NNT (1934) The surface tension of Debye–Hückel electrolytes. J Chem Phys 2:528. doi:10.1063/1.1749522

    Article  CAS  Google Scholar 

  33. Petersen PB, Saykally RJ (2006) On the nature of ions at the liquid water surface. Annu Rev Phys Chem 57:333–364

    Article  CAS  Google Scholar 

  34. Liu D, Ma G, Levering LM, Allen HC (2004) Vibrational spectroscopy of aqueous sodium halide solutions and air–liquid interfaces: observation of increased interfacial depth. J Phys Chem B 108:2252–2260. doi:10.1021/jp036169r

    Article  CAS  Google Scholar 

  35. Gurau MC, Lim SM, Castellana ET et al (2004) On the mechanism of the Hofmeister effect. J Am Chem Soc 126:10522–10523. doi:10.1021/ja047715c

    Article  CAS  Google Scholar 

  36. Arima K, Jiang P, Deng X et al (2010) Water adsorption, solvation, and deliquescence of potassium bromide thin films on SiO2 studied by ambient-pressure X-ray photoelectron spectroscopy. J Phys Chem C 114:14900–14906. doi:10.1021/jp101683z

    Article  CAS  Google Scholar 

  37. Krisch MJ, D’Auria R, Brown MA et al (2007) The effect of an organic surfactant on the liquid–vapor interface of an electrolyte solution. J Phys Chem C 111:13497–13509. doi:10.1021/jp073078b

    Article  CAS  Google Scholar 

  38. Cheng MH, Callahan KM, Margarella AM et al (2012) Ambient pressure X-ray photoelectron spectroscopy and molecular dynamics simulation studies of liquid/vapor interfaces of aqueous NaCl, RbCl, and RbBr solutions. J Phys Chem C 116:4545–4555. doi:10.1021/jp205500h

    Article  CAS  Google Scholar 

  39. Winter B, Weber R, Schmidt PM et al (2004) Molecular structure of surface-active salt solutions: photoelectron spectroscopy and molecular dynamics simulations of aqueous tetrabutylammonium iodide. J Phys Chem B 108:14558–14564. doi:10.1021/jp0493531

    Article  CAS  Google Scholar 

  40. Brown MA, D’Auria R, Kuo I-FW et al (2008) Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions. Phys Chem Chem Phys 10:4778–4784. doi:10.1039/b807041e

    Article  CAS  Google Scholar 

  41. Ottosson N, Faubel M, Bradforth SE et al (2010) Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J Electron Spectros Relat Phenomena 177:60–70. doi:10.1016/j.elspec.2009.08.007

    Article  CAS  Google Scholar 

  42. Ottosson N, Heyda J, Wernersson E et al (2010) The influence of concentration on the molecular surface structure of simple and mixed aqueous electrolytes. Phys Chem Chem Phys 12:10693–10700. doi:10.1039/c0cp00365d

    Article  CAS  Google Scholar 

  43. Jungwirth P, Tobias DJ (2006) Specific ion effects at the air/water interface. Chem Rev 106:1259–1281. doi:10.1021/cr0403741

    Article  CAS  Google Scholar 

  44. Höfft O, Borodin A, Kahnert U et al (2006) Surface segregation of dissolved salt ions. J Phys Chem B 110:11971–11976. doi:10.1021/jp061437h

    Article  Google Scholar 

  45. Horinek D, Herz A, Vrbka L et al (2009) Specific ion adsorption at the air/water interface: the role of hydrophobic solvation. Chem Phys Lett 479:173–183. doi:10.1016/j.cplett.2009.07.077

    Article  CAS  Google Scholar 

  46. Dos Santos AP, Diehl A, Levin Y (2010) Surface tensions, surface potentials, and the Hofmeister series of electrolyte solutions. Langmuir 26:10778–10783. doi:10.1021/la100604k

    Article  Google Scholar 

  47. Tissot H, Olivieri G, Gallet J-J et al (2015) Cation depth distribution at alkali halide solution surfaces. J Phys Chem C 119:150409065210004. doi:10.1021/jp512695c

    Article  Google Scholar 

  48. Egelhoff WF (1987) Core-level binding-energy shift at surface and in solids. Surf Sci Rep 6:253–415

    Article  Google Scholar 

  49. Kathmann SM, Kuo I-FW, Mundy CJ, Schenter GK (2011) Understanding the surface potential of water. J Phys Chem B 115:4369–4377. doi:10.1021/jp1116036

    Article  CAS  Google Scholar 

  50. Nishizawa K, Kurahashi N, Sekiguchi K et al (2011) High-resolution soft X-ray photoelectron spectroscopy of liquid water. Phys Chem Chem Phys 13:413–417. doi:10.1039/c0cp01636e

    Article  CAS  Google Scholar 

  51. Winter B, Aziz EF, Hergenhahn U et al (2007) Hydrogen bonds in liquid water studied by photoelectron spectroscopy. J Chem Phys 126:124504. doi:10.1063/1.2710792

    Article  Google Scholar 

  52. Faubel M, Steiner B, Toennies JP (1997) Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets. J Chem Phys 106:9013. doi:10.1063/1.474034

    Article  CAS  Google Scholar 

  53. Morgner H, Oberbrodhage J, Richter K, Roth K (1991) The gas-liquid phase transition shift at surfaces: experimental method and interpretation. J Electron Spectros Relat Phenomena 57:61–77. doi:10.1016/0368-2048(91)85014-K

    Article  CAS  Google Scholar 

  54. Reiss H (1985) The Fermi level and the redox potential. J Phys Chem 89:3783–3791. doi:10.1021/j100264a005

    Article  CAS  Google Scholar 

  55. Polack F, Silly M, Chauvet C, et al (2010) TEMPO: a new insertion device beamline at SOLEIL for time resolved photoelectron spectroscopy experiments on solids and interfaces. AIP Conference Proceedings pp 185–188

  56. Padmanabhan V, Daillant J, Belloni L et al (2007) Specific ion adsorption and short-range interactions at the air aqueous solution interface. Phys Rev Lett 99:086105. doi:10.1103/PhysRevLett.99.086105

    Article  Google Scholar 

  57. Haynes WM (2011) CRC handbook of chemistry and physics, 92nd edn. CRC Press, Boca Raton

    Google Scholar 

  58. Briggs D, Beamson G (1992) Primary and secondary oxygen-induced C1s binding energy shifts in x-ray photoelectron spectroscopy of polymers. Anal Chem 64:1729–1736. doi:10.1021/ac00039a018

    Article  CAS  Google Scholar 

  59. Barr TL (1995) Nature of the use of adventitious carbon as a binding energy standard. J Vac Sci Technol A 13:1239. doi:10.1116/1.579868

    Article  CAS  Google Scholar 

  60. Carniato S, Gallet J-J, Rochet F et al (2007) Characterization of hydroxyl groups on water-reacted Si(001)-2 × 1 using synchrotron radiation O1s core-level spectroscopies and core-excited state density-functional calculations. Phys Rev B 76:085321. doi:10.1103/PhysRevB.76.085321

    Article  Google Scholar 

  61. Lundholm M, Siegbahn H, Holmberg S, Arbman M (1986) Core electron spectroscopy of water solutions. J Electron Spectros Relat Phenomena 40:163–180. doi:10.1016/0368-2048(86)80015-9

    Article  CAS  Google Scholar 

  62. Wandelt K, Hulse JE (1984) Xenon adsorption on palladium. I. The homogeneous (110) (100), and (111) surfaces. J Chem Phys 80:1340. doi:10.1063/1.446815

    Article  CAS  Google Scholar 

  63. Wandelt K (1997) The local work function: concept and implications. Appl Surf Sci 111:1–10. doi:10.1016/S0169-4332(96)00692-7

    Article  CAS  Google Scholar 

  64. Markovich G, Cheshnovsky O, Kaldor U (1993) Charge transfer excitations in the photoelectron spectrum of Cl–NH3: experiment and calculation. J Chem Phys 99:6201. doi:10.1063/1.465913

    Article  CAS  Google Scholar 

  65. Kurahashi N, Karashima S, Tang Y et al (2014) Photoelectron spectroscopy of aqueous solutions: streaming potentials of NaX (X = Cl, Br, and I) solutions and electron binding energies of liquid water and X-. J Chem Phys 140:174506. doi:10.1063/1.4871877

    Article  Google Scholar 

  66. Fadley CS (1978) Basic concepts of X-ray photoelectron spectroscopy. In: Brundle CR, Baker AD (eds) Electron spectroscopy: theory, techniques and applications, vol 2. Academic Press, London, pp 14–15

    Google Scholar 

  67. Sellner B, Kathmann SM (2014) A matter of quantum voltages. J Chem Phys 141:18C534. doi:10.1063/1.4898797

    Article  Google Scholar 

  68. Borriello I, Cantele G, Ninno D et al (2007) Ab initio study of electron affinity variation induced by organic molecule adsorption on the silicon (001) surface. Phys Rev B 76:035430. doi:10.1103/PhysRevB.76.035430

    Article  Google Scholar 

  69. Nemec L (1973) Energy distribution of photoelectrons emitted by solutions: theoretical analysis. J Chem Phys 59:6092. doi:10.1063/1.1679975

    Article  CAS  Google Scholar 

  70. Bouchard C, Carette JD (1980) The surface potential barrier in secondary emission from semiconductors. Surf Sci 100:251–268. doi:10.1016/0039-6028(80)90456-2

    Article  CAS  Google Scholar 

  71. Eckart C (1930) The penetration of a potential barrier by electrons. Phys Rev 35:1303–1309. doi:10.1103/PhysRev.35.1303

    Article  CAS  Google Scholar 

  72. Ni Y, Gruenbaum SM, Skinner JL (2013) Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc Natl Acad Sci USA 110:1992–1998. doi:10.1073/pnas.1222017110

    Article  CAS  Google Scholar 

  73. Jolly WL, Bomben KD, Eyermann CJ (1984) Core-electron binding energies for gaseous atoms and molecules. At Data Nucl Data Tables 31:433–493. doi:10.1016/0092-640X(84)90011-1

    Article  CAS  Google Scholar 

  74. Sankari R, Ehara M, Nakatsuji H et al (2003) Vibrationally resolved O1s photoelectron spectrum of water. Chem Phys Lett 380:647–653. doi:10.1016/j.cplett.2003.08.108

    Article  CAS  Google Scholar 

  75. Reutt JE, Wang LS, Lee YT, Shirley DA (1986) Molecular beam photoelectron spectroscopy and femtosecond intramolecular dynamics of H2O+ and D2O+. J Chem Phys 85:6928. doi:10.1063/1.451379

    Article  CAS  Google Scholar 

  76. Gerischer H (1983) Fermi levels in electrolytes and the absolute scale of redox potentials. Appl Phys Lett 43:393. doi:10.1063/1.94356

    Article  CAS  Google Scholar 

  77. Nozik AJ, Memming R (1996) Physical chemistry of semiconductor-liquid interfaces. J Phys Chem 100:13061–13078. doi:10.1021/jp953720e

    Article  CAS  Google Scholar 

  78. Allen AO (1961) The radiation chemistry of water and aqueous solutions. D. Van Nostrand Company, Princeton

    Google Scholar 

  79. Mesu JG, Beale AM, de Groot FMF, Weckhuysen BM (2006) Probing the influence of X-rays on aqueous copper solutions using time-resolved in situ combined video/X-ray absorption near-edge/ultraviolet-visible spectroscopy. J Phys Chem B 110:17671–17677. doi:10.1021/jp062618m

    Article  CAS  Google Scholar 

  80. Rosen M, Schuldiner S (1973) The H+/H2 equilibrium potential dependence on H2 partial pressure on gold electrodes. Electrochim Acta 18:687–690. doi:10.1016/0013-4686(73)80059-3

    Article  CAS  Google Scholar 

  81. Tissot H, Gallet J, Bournel F, Naitabdi A (2014) Silicon monomer formation and surface patterning of Si (001) −2 × 1 following TEOS dissociative adsorption at room temperature. J Phys Chem C 118(4):1887–1893

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to Dr. Jean Daillant, director of Synchrotron SOLEIL, for enlightening discussions concerning the surface of electrolytes. They also much appreciated the very efficient technical support from Christian Chauvet (TEMPO beamline, SOLEIL). This NAP-XPS experiment, managed by the LCPMR team (Université Pierre et Marie Curie), was funded by the Ile-de-France Region (Photoémission Environnementale en Ile-de-France, SESAME n°090003524), by the Agence Nationale de la Recherche (Surfaces under Ambient Pressure with Electron Spectroscopies, ANR- 08-BLAN-0096), and by the Université Pierre et Marie Curie. Synchrotron SOLEIL supported the integration of the setup to TEMPO beamline. LABEX MiChem (UPMC) also partially funded the experiment. HT received a PhD scholarship from Synchrotron SOLEIL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Rochet.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1229 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tissot, H., Gallet, JJ., Bournel, F. et al. The Electronic Structure of Saturated NaCl and NaI Solutions in Contact with a Gold Substrate. Top Catal 59, 605–620 (2016). https://doi.org/10.1007/s11244-015-0530-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0530-6

Keywords

Navigation