Skip to main content
Log in

A Comparative Study of Methanol Adsorption and Dissociation over WO3(001) and ReO3(001)

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Tungsten (5d46s2) and rhenium (5d56s2) form MO3 oxides (M = W or Re) with similar structures. The adsorption and dissociation of methanol on these oxide surfaces, often used to probe the surface redox centers, have been analyzed using periodic density functional calculations. Molecular adsorption of methanol at the metal site on both surfaces with 0.5 ML oxygen coverage was found to be exothermic with adsorption energies of −74 and −106 kJ/mol on WO3(001) and ReO3(001), respectively. In contrast, heterolytic dissociation of methanol to adsorbed methoxide species at the metal site and H at the surface oxygen site is not energetically favored on WO3(001) but favored on ReO3(001). The dissociation energies to form coadsorbed methoxide and hydrogen adatom are 35 kJ/mol on WO3 and −112 kJ/mol on ReO3, respectively. The activation barrier for dissociating the molecularly adsorbed methanol on ReO3(001) was determined to be 19 kJ/mol. Dehydrogenation to form coadsorbed hydroxymethyl and hydrogen adatom is not energetically favorable on both surfaces with respect to the molecularly adsorbed methanol. However, the dehydrogenation path is exothermic on ReO3 with respect to the gas phase methanol, with the heats of reaction of −25 kJ/mol, but highly endothermic on WO3, with the heats of reaction of 114 kJ/mol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Henrich VE, Cox PA (1996) The surface science of metal oxides. Cambridge University Press, Cambridge

    Google Scholar 

  2. Murrell LL, Grenoble DC, Kim CJ, Dispenziere NC (1987) Supported transition-metal oxides as acid cracking catalysts—periodic trends and their relationship to activity and selectivity. J Catal 107:463–470

    Article  CAS  Google Scholar 

  3. Benitez VM, Querini CA, Figoli NS (2003) Characterization of WOx/Al2O3 and MoOx/Al2O3 catalysts and their activity and deactivation during skeletal isomerization of 1-butene. Appl Catal A 252:427–436

    Article  CAS  Google Scholar 

  4. Mamede AS, Payen E, Grange P, Poncelet G, Ion A, Alifanti M, Parvulescu VI (2004) Characterization of WOx/CeO2 catalysts and their reactivity in the isomerization of hexane. J Catal 223:1–12

    Article  CAS  Google Scholar 

  5. Di Gregorio F, Keller V (2004) Activation and isomerization of hydrocarbons over WO3/ZrO2 catalysts—I. Preparation, characterization, and X-ray photoelectron spectroscopy studies. J Catal 225:45–55

    Article  Google Scholar 

  6. Benitez VM, Querini CA, Figoli NS, Comelli RA (1999) Skeletal isomerization of 1-butene on WOx/γ-Al2O3. Appl Catal A-Gen 178:205–218

    Article  CAS  Google Scholar 

  7. Ji WJ, Chen Y, Kung HH (1997) Vapor phase aldol condensation of acetaldehyde on metal oxide catalysts. Appl Catal A 161:93–104

    Article  CAS  Google Scholar 

  8. Hilbrig F, Schmelz H, Knozinger H, Sinev M, Bell AT, Schmal M, Forzatti P, Wachs IE, Uematsu T, Vedrine JC, Hums E (1993) Acidity of WOx/TiO2 catalysts for selective catalytic reduction (SCR). Stud Surf Sci Catal 75:1351–1362

    Article  CAS  Google Scholar 

  9. Yuan YH, Iwasawa Y (2002) Performance and characterization of supported rhenium oxide catalysts for selective oxidation of methanol to methylal. J Phys Chem B 106:4441–4449

    Article  CAS  Google Scholar 

  10. Viswanadham N, Shido T, Iwasawa Y (2001) Performances of rhenium oxide-encapsulated ZSM-5 catalysts in propene selective oxidation/ammoxidation. Appl Catal A 219:223–233

    Article  CAS  Google Scholar 

  11. Barton Cole E, Lakkaraju PS, Rampulla DM, Morris AJ, Abelev E, Bocarsly AB (2010) Using a one-electron shuttle for the multielectron reduction of CO2 to methanol: kinetic, mechanistic, and structural insights. J Am Chem Soc 132:11539–11551

    Article  CAS  Google Scholar 

  12. Ge Q (2013) Chapter 3—mechanistic understanding of catalytic CO2 activation from first principles theory. In: Suib SL (ed) New and future developments in catalysis. Elsevier, Amsterdam, pp 49–79

    Chapter  Google Scholar 

  13. Wachs IE, Deo G, Juskelis MV, Weckhuysen BM (1997) Methanol oxidation over supported vanadium oxide catalysts: new fundamental insights about oxidation reactions over metal oxide catalysts from transient and steady state kinetics. In: Froment GF, Waugh KC (eds) Dynamics of surfaces and reaction kinetics in heterogeneous catalysis. Elsevier, Amsterdam, pp 305–314

    Chapter  Google Scholar 

  14. Cheng W-H, Kung HH (1994) Methanol production and use. Marcel Dekker, New York

    Google Scholar 

  15. Badlani M, Wachs IE (2001) Methanol: a “smart” chemical probe molecule. Catal Lett 75:137–149

    Article  CAS  Google Scholar 

  16. Burcham LJ, Wachs IE (1999) The origin of the support effect in supported metal oxide catalysts: in situ infrared and kinetic studies during methanol oxidation. Catal Today 49:467–484

    Article  CAS  Google Scholar 

  17. Wachs IE, Chen Y, Jehng JM, Briand LE, Tanaka T (2003) Molecular structure and reactivity of the group V metal oxides. Catal Today 78:13–24

    Article  CAS  Google Scholar 

  18. Gao XT, Jehng JM, Wachs IE (2002) In situ UV-vis-NIR diffuse reflectance and Raman spectroscopic studies of propane oxidation over ZrO2-supported vanadium oxide catalysts. J Catal 209:43–50

    Article  CAS  Google Scholar 

  19. Schirber JE, Morosin B (1979) “Compressibility collapse” transition in ReO3. Phys Rev Lett 42:1485–1487

    Article  CAS  Google Scholar 

  20. Woodward PM, Sleight AW, Vogt T (1997) Ferroelectric tungsten trioxide. J Solid State Chem 131:9–17

    Article  CAS  Google Scholar 

  21. Butler MA, Nasby RD, Quinn RK (1976) Tungsten trioxide as an electrode for photoelectrolysis of water. Solid State Commun 19:1011–1014

    Article  CAS  Google Scholar 

  22. Ferretti A, Rogers DB, Goodenough JB (1965) The relation of the electrical conductivity in single crystals of rhenium trioxide to the conductivities of Sr2MgReO6 and NaxWO3. J Phys Chem Solids 26:2007–2011

    Article  CAS  Google Scholar 

  23. Gurlo A (2011) Nanosensors: towards morphological control of gas sensing activity. SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3:154–165

    Article  CAS  Google Scholar 

  24. Mei D, Deskins NA, Dupuis M, Ge Q (2008) Density functional theory study of methanol decomposition on the CeO2(110) surface. J Phys Chem C 112:4257–4266

    Article  CAS  Google Scholar 

  25. Mei D, Deskins NA, Dupuis M, Ge Q (2007) Methanol adsorption on the clean CeO2(111) surface: a density functional theory study. J Phys Chem C 111:10514–10522

    Article  CAS  Google Scholar 

  26. Han Y, Liu C-J, Ge Q (2009) Effect of Pt clusters on methanol adsorption and dissociation over perfect and defective anatase TiO2(101) surface. J Phys Chem C 113:20674–20682

    Article  CAS  Google Scholar 

  27. Ye J, Liu C, Ge Q (2012) A DFT study of methanol dehydrogenation on the PdIn(110) surface. Phys Chem Chem Phys 14:16660–16667

    Article  CAS  Google Scholar 

  28. Kresse G, Furthmuller J (1996) Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  29. Kresse G, Hafner J (1993) Ab initio molecular-dynamics for liquid-metals. Phys Rev B 47:558–561

    Article  CAS  Google Scholar 

  30. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892–7895

    Article  Google Scholar 

  31. Blochl PE (1994) Projector augmented-wave method. Phys Rev B 50:17953–17979

    Article  Google Scholar 

  32. Hobbs D, Kresse G, Hafner J (2000) Fully unconstrained noncollinear magnetism within the projector augmented-wave method. Phys Rev B 62:11556–11570

    Article  CAS  Google Scholar 

  33. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687

    Article  CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  35. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  36. Mills G, Jonsson H, Schenter GK (1995) Reversible work transition-state theory—application to dissociative adsorption of hydrogen. Surf Sci 324:305–337

    Article  CAS  Google Scholar 

  37. Henkelman G, Jonsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113:9978–9985

    Article  CAS  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jonsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  39. Pan Y-X, Liu C-J, Ge Q (2010) Effect of surface hydroxyls on selective CO2 hydrogenation over Ni4/γ-Al2O3: a density functional theory study. J Catal 272:227–234

    Article  CAS  Google Scholar 

  40. Zhang Z, Tang M, Wang Z-T, Ke Z, Xia Y, Park K, Lyubinetsky I, Dohnálek Z, Ge Q (2015) Imaging of formaldehyde adsorption and diffusion on TiO2(110). Top Catal 58:103–113

    Article  CAS  Google Scholar 

  41. Kresse G, Furthmuller J (2015) VASP, the Guide

  42. Yakovkin IN, Gutowski M (2007) Driving force for the WO3(001) surface relaxation. Surf Sci 601:1481–1488

    Article  CAS  Google Scholar 

  43. Tanner RE, Altman EI (2001) Effect of surface treatment on the γ-WO3(001) surface: a comprehensive study of oxidation and reduction by scanning tunneling microscopy and low-energy electron diffraction. J Vac Sci Technol A 19:1502–1509

    Article  CAS  Google Scholar 

  44. Li M, Posadas A, Ahn CH, Altman EI (2005) Scanning tunneling microscopy study of terminal oxygen structures on WO3(100) thin films. Surf Sci 579:175–187

    Article  CAS  Google Scholar 

  45. Huang X, Zhai HJ, Li J, Wang LS (2006) On the structure and chemical bonding of tri-tungsten oxide clusters W3O n and W3On (n = 7 − 10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. J Phys Chem A 110:85–92

    Article  CAS  Google Scholar 

  46. Ling S, Mei D, Gutowski M (2011) Reactivity of hydrogen and methanol on (001) surfaces of WO3, ReO3, WO3/ReO3 and ReO3/WO3. Catal Today 165:41–48

    Article  CAS  Google Scholar 

  47. Wachs IE (1996) Raman and IR studies of surface metal oxide species on oxide supports: supported metal oxide catalysts. Catal Today 27:437–455

    Article  CAS  Google Scholar 

  48. Macht J, Baertsch CD, May-Lozano M, Soled SL, Wang Y, Iglesia E (2004) Support effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains. J Catal 227:479–491

    Article  CAS  Google Scholar 

  49. Onfroy T, Clet G, Houalla M (2005) Acidity, surface structure, and catalytic performance of WOx supported on monoclinic zirconia. J Phys Chem B 109:3345–3354

    Article  CAS  Google Scholar 

  50. Pan Y, Liu C-J, Ge Q (2008) Adsorption and protonation of CO2 on partially hydroxylated γ-Al2O3 surfaces: a density functional theory study. Langmuir 24:12410–12419

    Article  CAS  Google Scholar 

  51. Pan Y-X, Kuai P, Liu Y, Ge Q, Liu C-J (2010) Promotion effects of Ga2O3 on CO2 adsorption and conversion over a SiO2-supported Ni catalyst. Energy Environ Sci 3:1322–1325

    Article  CAS  Google Scholar 

  52. Pan Y-X, Liu C-J, Mei D, Ge Q (2010) Effects of hydration and oxygen vacancy on CO2 adsorption and activation on β-Ga2O3(100). Langmuir 26:5551–5558

    Article  CAS  Google Scholar 

  53. Yin S, Swift T, Ge Q (2011) Adsorption and activation of CO2 over the Cu-Co catalyst supported on partially hydroxylated γ-Al2O3. Catal Today 165:10–18

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Basics Energy Sciences, U.S. Department of Energy (DOE) under Grant No. DE-FG02-05ER46231. Calculations was done at the W. R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at PNNL. PNNL is operated by Battelle for the U.S. DOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingfeng Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Q., Gutowski, M. A Comparative Study of Methanol Adsorption and Dissociation over WO3(001) and ReO3(001). Top Catal 58, 655–664 (2015). https://doi.org/10.1007/s11244-015-0402-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-015-0402-0

Keywords

Navigation