Skip to main content
Log in

Core–Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We review our recent progress in the development of Pt–Ni bimetallic electrocatalysts with both high sustained activity and sustained stability for oxygen reduction reaction (ORR). This was achieved by an atomic understanding and rational control of the core–shell compositional patterns and size-related nanoporosity within the bimetallic nanoparticles formed during chemical and electrochemical pretreatment and electrocatalysis. In particular, we reveal how the size of the nanoparticle directly influences the nanoporosity formation and thereby the near surface composition, catalytic activity and stability. Our atomic insights provide a clearer picture on how bimetallic nanoparticles should be tailored for optimal ORR performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mavrikakis M, Hammer B, Nørskov JK (1998) Effect of strain on the reactivity of metal surfaces. Phys Rev Lett 81:2819–2822

    Article  Google Scholar 

  2. Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240

    Article  CAS  Google Scholar 

  3. Gasteiger HA, Markovic NM (2009) Just a dream-or future reality? Science 324:48–49

    Article  CAS  Google Scholar 

  4. Wagner FT, Lakshmanan B, Mathias MF (2010) Electrochemistry and the future of the automobile. J Phy Chem Lett 1:2204–2219

    Article  CAS  Google Scholar 

  5. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  6. Eiswirth M, Bürger J, Strasser P, Ertl G (1996) Oscillating Langmuir–Hinshelwood Mechanisms. J Phys Chem 100:19118–19123

    Google Scholar 

  7. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45:2897–2901

    Article  CAS  Google Scholar 

  8. Greeley J, Mavrikakis M (2004) Alloy catalysts designed from first principles. Nat Mater 3:810–815

    Article  CAS  Google Scholar 

  9. Sasaki K, Naohara H, Choi Y, Cai Y, Chen W-F, Liu P, Adzic RR (2012) Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nat Commun 3:1115

    Article  Google Scholar 

  10. Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core–shell nanocatalysts: particle Size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302

    Article  CAS  Google Scholar 

  11. Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249–262

    Article  CAS  Google Scholar 

  12. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128:8813–8819

    Article  CAS  Google Scholar 

  13. Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497

    Article  CAS  Google Scholar 

  14. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nature Mater 6:241–247

    Article  CAS  Google Scholar 

  15. Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat Chem 2:454–460

    Article  CAS  Google Scholar 

  16. Strasser P (2009) Dealloyed core-shell fuel cell electrocatalysts. Rev Chem Eng 25:255–295

    Article  CAS  Google Scholar 

  17. Strasser P, Koha S, Greeley J (2008) Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. Phys Chem Chem Phys 10:3670–3683

    Google Scholar 

  18. Yu CF, Koh S, Leisch JE, Toney MF, Strasser P (2008) Size and composition distribution dynamics of alloy nanoparticle electrocatalysts probed by anomalous small angle X-ray scattering (ASAXS). Faraday Discuss 140:283–296

    Google Scholar 

  19. Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11:798–802

    Article  CAS  Google Scholar 

  20. Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10:638–644

    Article  CAS  Google Scholar 

  21. Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12:765–771

    Article  CAS  Google Scholar 

  22. van der Vliet DF, Wang C, Tripkovic D, Strmcnik D, Zhang XF, Debe MK, Atanasoski RT, Markovic NM, Stamenkovic VR (2012) Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat Mater 11:1051–1058

    Google Scholar 

  23. Hasche F, Oezaslan M, Strasser P (2010) Activity, stability and degradation of multi walled carbon nanotube (MWCNT) supported Pt fuel cell electrocatalysts. Phys Chem Chem Phys 12:15251–15258

    Google Scholar 

  24. Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131:16348–16349

    Article  CAS  Google Scholar 

  25. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56:9–35

    Article  CAS  Google Scholar 

  26. Koh S, Hahn N, Yu CF, Strasser P (2008) Effects of composition and annealing conditions on catalytic activities of dealloyed Pt–Cu nanoparticle electrocatalysts for PEMFC. J Electrochem Soc 155:B1281–B1288

    Article  CAS  Google Scholar 

  27. Neyerlin KC, Srivastava R, Yu CF, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186:261–267

    Google Scholar 

  28. Hasché F, Oezaslan M, Strasser P (2011) Activity, stability, and degradation mechanisms of dealloyed PtCu3 and PtCo3 nanoparticle fuel cell catalysts. ChemCatChem 3:1805–1813

    Google Scholar 

  29. Gan L, Heggen M, Rudi S, Strasser P (2012) Core–shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12:5423–5430

    Article  CAS  Google Scholar 

  30. Gan L, Heggen M, O’Malley R, Theobald B, Strasser P (2013) Understanding and controlling nanoporosity formation for improving the stability of bimetallic fuel cell catalysts. Nano Lett 13:1131–1138

    Article  CAS  Google Scholar 

  31. Kongkanand A, Wagner FT (2013) High-activity dealloyed catalysts. 2013 DOE Hydrogen Program Annual Merit Review FC-087, http://www.hydrogen.energy.gov/pdfs/review13/fc087_kongkanand_2013_o.pdf

  32. Wang RY, Xu CX, Bi XX, Ding Y (2012) Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ Sci 5:5281–5286

    Article  CAS  Google Scholar 

  33. Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt3Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113:1109–1125

    Article  CAS  Google Scholar 

  34. Dutta I, Carpenter MK, Balogh MP, Ziegelbauer JM, Moylan TE, Atwan MH, Irish NP (2010) Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst. J Phys Chem C 114:16309–16320

    Article  CAS  Google Scholar 

  35. Snyder J, Ian McCue, Ken Livi, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134:8633–8645

    Article  CAS  Google Scholar 

  36. Wang D, Yu Y, Xin HL, Hovden R, Ercius P, Mundy JA, Chen H, Richard JH, Muller DA, DiSalvo FJ, Abruña HD (2012) Tuning oxygen reduction reaction activity via controllable dealloying: a model study of ordered Cu3Pt/C intermetallic nanocatalysts. Nano Lett 12:5230–5238

    Article  CAS  Google Scholar 

  37. Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater 9:904–907

    Article  CAS  Google Scholar 

  38. Alessio R, Dell’Amico DB, Calderazzo F, Englert U, Guarini A, Labella L, Strasser P (1998) N,N-Dialkylcarbamato complexes of the d10 cations of copper, silver, and gold. Helv Chim Acta 81:219–230

    Google Scholar 

  39. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989–1992

    Google Scholar 

  40. Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2:891–898

    Article  CAS  Google Scholar 

  41. Mazumder V, Lee Y, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1231

    Article  CAS  Google Scholar 

  42. Ahrenstorf K, Albrecht O, Heller H, Kornowski A, Gorlitz D, Weller H (2007) Colloidal synthesis of NixPt1-x nanoparticles with tuneable composition and size. Small 3:271–274

    Article  CAS  Google Scholar 

  43. Ahrenstorf K, Heller H, Kornowski A, Broekaert JAC, Weller H (2008) Nucleation and growth mechanism of NixPt1-x nanoparticles. Adv Funct Mat 18:3850–3856

    Article  CAS  Google Scholar 

  44. Wang C, Chi MF, Wang GF, van der Vliet D, Li DG, More K, Wang HH, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Correlation between surface chemistry and electrocatalytic properties of monodisperse PtxNi1-x nanoparticles. Adv Funct Mat 21:147–152

    Article  Google Scholar 

  45. Yang HZ, Zhang J, Kumar S, Zhang HJ, Yang RD, Fang JY, Zou SZ (2009) Monodisperse and highly active PtNi nanoparticles for O2 reduction. Electrochem Commun 11:2278–2281

    Article  CAS  Google Scholar 

  46. Rudi S, Tuaev X, Strasser P (2012) Electrocatalytic oxygen reduction on dealloyed Pt1−xNix alloy nanoparticle electrocatalysts. Electrocatalysis 3:265–273

    Google Scholar 

  47. Cui C-H; Ahmadi M; Behafarid F; Gan L; Neumann M; Heggen M; Roldan Cuenya B; Strasser P (2013) Shape-selective bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discussions

  48. Wang C, Wang GF, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. Phys Chem Chem Phys 12:6933–6939

    Article  CAS  Google Scholar 

  49. Wang C, Chi MF, Li DG, Strmcnik D, van der Vliett D, Wang GF, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR (2011) Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J Am Chem Soc 133:14396–14403

    Article  CAS  Google Scholar 

  50. Gan L, Yu R, Luo J, Cheng ZY, Zhu J (2012) Lattice strain distributions in individual dealloyed Pt–Fe catalyst nanoparticles. J Phy Chem Lett 3:934–938

    Article  CAS  Google Scholar 

  51. Tuaev X, Rudi S, Petkov V, Hoell A, Strasser P (2013) In situ study of atomic structure transformations of Pt–Ni nanoparticle catalysts during electrochemical potential cycling. ACS Nano 7:5666–5674

    Article  CAS  Google Scholar 

  52. Heggen M, Oezaslan M, Houben L, Strasser P (2012) Formation and analysis of core–shell fine structures in Pt bimetallic nanoparticle fuel cell electrocatalysts. J Phys Chem C 116:19073–19083

    Article  CAS  Google Scholar 

  53. Oezaslan M, Heggen M, Strasser P (2012) Size-dependent morphology of dealloyed bimetallic catalysts: linking the nano to the macro scale. J Am Chem Soc 134:514–524

    Article  CAS  Google Scholar 

  54. Yu Z, Zhang J, Liu Z, Ziegelbauer JM, Xin H, Dutta I, Muller DA, Wagner FT (2012) Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells. J Phys Chem C 116:19877–19885

    Article  CAS  Google Scholar 

  55. Liu Z, Xin H, Yu Z, Zhu Y, Zhang J, Mundy JA, Muller DA, Wagner FT (2012) Atomic-scale compositional mapping and 3-dimensional electron microscopy of dealloyed PtCo3 catalyst nanoparticles with spongy multi-core/shell structures. J Electrochem Soc 159:F554–F559

    Article  CAS  Google Scholar 

  56. Erlebacher J (2011) Mechanism of coarsening and bubble formation in high-genus nanoporous metals. Phys Rev Lett 106:225504

    Article  CAS  Google Scholar 

  57. Erlebacher J, Aziz MJ, Karma A, Dimitrov N, Sieradzki K (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453

    Article  CAS  Google Scholar 

  58. Oezaslan M, Hasche F, Strasser P (2011) In situ observation of bimetallic alloy nanoparticle formation and growth using high-temperature XRD. Chem Mater 23:2159–2165

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Strasser.

Additional information

Dedicated to the 60th birthday of Prof. Jens Nørskov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gan, L., Cui, C., Rudi, S. et al. Core–Shell and Nanoporous Particle Architectures and Their Effect on the Activity and Stability of Pt ORR Electrocatalysts. Top Catal 57, 236–244 (2014). https://doi.org/10.1007/s11244-013-0178-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0178-z

Keywords

Navigation