Skip to main content
Log in

A Molecular Perspective on the d-Band Model: Synergy Between Experiment and Theory

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The d-band model of Hammer and Nørskov (Nature 376:238, 1995 [3]) relating adsorption energies to the d-band position, and the adsorption energies to barriers in catalytic reactions, has been extremely successful in predicting reactivities and catalysts. In the present contribution we review recent combined experimental and theoretical work on chemical bond-formation at surfaces. We focus on the adsorbate and how the adsorbate electronic structure can be rehybridized through mixing with unoccupied states to generate the radical state, real or virtual, that can then form electron pairs with the metal d-states, as described by the d-band model. We discuss five important bonding situations: (i) atomic radical, (ii) diatomics with unsaturated π-systems (Blyholder model), (iii) unsaturated hydrocarbons (Dewar–Chatt–Duncanson model), (iv) lone–pair interactions, and (v) saturated hydrocarbons (physisorption). Where the d-band model predicts trends along the series of transition metals, the present work provides intuitive tools for predicting trends among different adsorbates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nilsson A, Pettersson LGM, Nørskov JK (2008) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam

    Google Scholar 

  2. Bligaard T, Nørskov JK (2008) In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, pp 255–316

    Chapter  Google Scholar 

  3. Hammer B, Nørskov JK (1995) Nature 376:238

    Article  CAS  Google Scholar 

  4. Greeley J, Mavrikakis M (2004) Nat Mater 3:810

    Article  CAS  Google Scholar 

  5. Greeley J, Stephens I, Bandarenka A, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorf I, Nørskov JK (2009) Nat Chem 1:552

    Article  CAS  Google Scholar 

  6. Hammer B, Nørskov JK (2000) Adv Catal 45:71–129

    CAS  Google Scholar 

  7. Lang ND, Williams AR (1978) Phys Rev B 18:616

    Article  CAS  Google Scholar 

  8. Newns DM (1969) Phys Rev 178:1123

    Article  CAS  Google Scholar 

  9. Nilsson A, Pettersson LGM, Hammer B, Bligaard T, Christensen CH, Nørskov JK (2005) Catal Lett 100:111–114

    Article  CAS  Google Scholar 

  10. Nilsson A, Pettersson LGM (2008) In: Nilsson A, Pettersson LGM, Nørskov JK (eds) Chemical bonding at surfaces and interfaces. Elsevier, Amsterdam, p 57

    Chapter  Google Scholar 

  11. Nilsson A, Pettersson LGM (2004) Surf Sci Rep 55:49–167

    Article  CAS  Google Scholar 

  12. Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:016105

    Article  CAS  Google Scholar 

  13. Nilsson A, Hasselström J, Föhlisch A, Karis O, Pettersson LGM, Nyberg M, Triguero L (2000) J Electron Spectrosc Relat Phenom 110(111):15

    Article  Google Scholar 

  14. Nilsson A, Weinelt M, Wiell T, Bennich P, Karis O, Wassdahl N, Stöhr J, Samant M (1997) Phys Rev Lett 87:2847

    Article  Google Scholar 

  15. Allyn CL, Gustafsson T, Plummer EW (1977) Solid State Commun 24:531

    Article  CAS  Google Scholar 

  16. Blyholder G (1964) J Phys Chem 68:2772

    Article  CAS  Google Scholar 

  17. Delbecq F, Sautet P (1999) Phys Rev B 59:5142

    Article  CAS  Google Scholar 

  18. Eastman DE, Cashion K (1971) Phys Rev Lett 27:1520

    Article  CAS  Google Scholar 

  19. Gumhalter B, Wandelt K, Avouris P (1988) Phys Rev B 37:8048

    Article  CAS  Google Scholar 

  20. Gustafsson T, Plummer EW (1977) In: Feuerbacher B, Fitton B, Willis R (eds) Photoemission from surfaces. Wiley, London

    Google Scholar 

  21. Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141

    Article  CAS  Google Scholar 

  22. Sung SS, Hoffmann R (1985) J Am Chem Soc 107:578

    Article  CAS  Google Scholar 

  23. Bennich P, Wiell T, Karis O, Weinelt M, Wassdahl N, Nilsson A, Nyberg M, Pettersson LGM, Stöhr J, Samant M (1998) Phys Rev B 57:9274

    Article  CAS  Google Scholar 

  24. Dubois D, Hoffmann R (1977) Nouv J Chim 1:479

    CAS  Google Scholar 

  25. Hoffmann R, Chen MML, Thorn D (1977) Inorg Chem 16:503

    Article  CAS  Google Scholar 

  26. Föhlisch A, Nyberg M, Bennich P, Triguero L, Hasselström J, Karis O, Pettersson LGM, Nilsson A (2000) J Chem Phys 112:1946

    Article  Google Scholar 

  27. Föhlisch A, Nyberg M, Hasselström J, Karis O, Pettersson LGM, Nilsson A (2000) Phys Rev Lett 85:3309

    Article  Google Scholar 

  28. Föhlisch A, Bennich P, Hasselström J, Karis O, Nilsson A, Triguero L, Nyberg M, Pettersson LGM (2000) Phys Rev B 16:16229

    Article  Google Scholar 

  29. Föhlisch A, Stichler M, Keller C, Wurth W, Nilsson A (2004) J Chem Phys 121:4848

    Article  Google Scholar 

  30. Nyberg M, Föhlisch A, Triguero L, Bassan A, Nilsson A, Pettersson LGM (2006) J Mol Struct THEOCHEM 762:123

    Article  CAS  Google Scholar 

  31. Wimmer E, Fu C, Freeman A (1985) Phys Rev Lett 55:2618

    Article  CAS  Google Scholar 

  32. Feibelman PJ, Hammer B, Nørskov JK, Wagner F, Scheffler M, Stumpf R, Watwe R, Dumesic J (2001) J Phys Chem B 105:4018

    Article  CAS  Google Scholar 

  33. Mavrikakis M, Hammer B, Nørskov JK (1998) Phys Rev Lett 81:2819

    Article  Google Scholar 

  34. Dewar MJS (1951) Bull Soc Chim Fr 18:C79

    Google Scholar 

  35. Chatt J, Duncanson LA (1953) J Chem Soc 2939

  36. Öström H (2004) Chemical bonding of hydrocarbons to metal surfaces. PhD Thesis, Stockholm University, Stockholm

  37. Triguero L, Föhlisch A, Väterlein P, Hasselström J, Weinelt M, Pettersson LGM, Luo Y, Ågren H, Nilsson A (2000) J Am Chem Soc 122:12310

    Article  CAS  Google Scholar 

  38. Weinelt M, Wassdahl N, Wiell T, Karis O, Hasselström J, Bennich P, Nilsson A, Stöhr J, Samant M (1998) Phys Rev B 58:7351

    Article  CAS  Google Scholar 

  39. Triguero L, Luo Y, Pettersson LGM, Ågren H, Väterlein P, Weinelt M, Föhlisch A, Hasselström J, Karis O, Nilsson A (1999) Phys Rev B 59:5189

    Article  CAS  Google Scholar 

  40. Öström H, Föhlisch A, Nyberg M, Weinelt M, Heske C, Pettersson LGM, Nilsson A (2004) Surf Sci 559:85

    Article  Google Scholar 

  41. Triguero L, Pettersson LGM, Minaev B, Ågren H (1998) J Chem Phys 108:1193

    Article  CAS  Google Scholar 

  42. Carter EA, Koel BE (1990) Surf Sci 226:339

    Article  CAS  Google Scholar 

  43. Dahl S, Logadottir A, Egeberg C, Larsen JH, Chorkendorff I, Tornqvist E, Nørskov JK (1999) Phys Rev Lett 83:1814

    Article  Google Scholar 

  44. Dahl S, Logadottir A, Jacobsen CH, Nørskov JK (2001) Appl Catal A222:19

    Article  Google Scholar 

  45. Grunze M, Golze M, Hirschwald W, Freund HJ, Plum H, Selp U, Tsai M, Ertl G, Kuppers J (1984) Phys Rev Lett 53:850

    Article  CAS  Google Scholar 

  46. Huber KP, Hertzberg G (1979) Molecular spectra and molecular structure. Van Nostrand Reinhold, New York

    Book  Google Scholar 

  47. Guest RJ, Hernnäs B, Bennich P, Björneholm O, Nilsson A, Palmer RE, Mårtensson N (1992) Surf Sci 1992:239

    Article  Google Scholar 

  48. Puglia C, Nilsson A, Hernnäs B, Karis O, Bennich P, Mårtensson N (1995) Surf Sci 342:119

    Article  CAS  Google Scholar 

  49. Stöhr J (1992) NEXAFS spectroscopy. Springer, Berlin

    Book  Google Scholar 

  50. Sandell A, Nilsson A, Mårtensson N (1991) Surf Sci 241:L1

    Article  CAS  Google Scholar 

  51. Ogasawara H, Brena B, Nordlund D, Nyberg M, Pelmenschikov A, Pettersson LGM, Nilsson A (2002) Phys Rev Lett 89:276102

    Article  CAS  Google Scholar 

  52. Schiros T, Haq S, Ogasawara H, Takahashi O, Ostrom H, Andersson K, Pettersson LGM, Hodgson A, Nilsson A (2006) Chem Phys Lett 429:415

    Article  CAS  Google Scholar 

  53. Michaelides A, Ranea VA, de Andres PL, King DA (2003) Phys Rev Lett 90:216102

    Article  CAS  Google Scholar 

  54. Carrasco J, Michaelides A, Scheffler M (2009) J Chem Phys 130:184707

    Article  Google Scholar 

  55. Meng S, Wang EG, Gao S (2004) Phys Rev B 89:195404

    Article  Google Scholar 

  56. Schiros T, Takahashi O, Andersson K, Öström H, Pettersson LGM, Nilsson A, Ogasawara H (2010) J Chem Phys 132:094701

    Article  CAS  Google Scholar 

  57. Schiros T, Andersson KJ, Pettersson LGM, Nilsson A, Ogasawara H (2010) J Electron Spectrosc Relat Phenom 177:85

    Article  CAS  Google Scholar 

  58. Öström H, Triguero L, Nyberg M, Ogasawara H, Pettersson LGM, Nilsson A (2003) Phys Rev Lett 91:046102

    Article  Google Scholar 

  59. Öström H, Triguero L, Weiss K, Ogasawara H, Garnier MG, Nordlund D, Nyberg M, Pettersson LGM, Nilsson A (2003) J Chem Phys 118:3782

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge all the people involved in the various projects on which this contribution is based. This work was supported by the U.S. Department of Energy, Basic Energy Sciences through the SUNCAT Center for Interface Science and Catalysis, the Stanford Synchrotron Radiation Lightsource, a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences and by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Gunnar Moody Pettersson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, L.G.M., Nilsson, A. A Molecular Perspective on the d-Band Model: Synergy Between Experiment and Theory. Top Catal 57, 2–13 (2014). https://doi.org/10.1007/s11244-013-0157-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0157-4

Keywords

Navigation