Skip to main content

Advertisement

Log in

Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The production of furfural from the C5 monosaccharides xylose, arabinose and ribose, as well as from real biomass (corn fiber), was studied using H-Beta zeolite as catalyst in a monophasic system with the biomass-derived solvent, gamma-valerolactone. Due to the combination of Brønsted and Lewis acid sites on this catalyst (Brønsted:Lewis ratio = 1.66), H-Beta acts as a bifunctional catalyst, being able to isomerize (Lewis acid) and dehydrate (Brønsted acid) monosaccharides. The combination of Lewis and Brønsted acid functionality of H-Beta was shown to be effective for the isomerization of xylose and arabinose, followed by dehydration. While no advantages were found in the conversion of xylose, higher furfural yields were achieved from arabinose, using H-Beta, 73 %, compared to sulfuric acid (44 %) and Mordenite (49 %). The furfural yields from corn fiber for H-Beta, H-Mordenite and sulfuric acid were 62, 44, and 55 %, respectively, showing that H-Beta is particularly effective for conversion of this biomass feedstock composed of 45 wt% hemicellulose, of which 66 % is xylose and 33 % arabinose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dutta S, De S, Saha B, Alam MI (2012) Catal Sci Technol 2:2025–2036

    Article  CAS  Google Scholar 

  2. Bozell JJ, Petersen GR (2010) Green Chem 12:539–554

    Article  CAS  Google Scholar 

  3. Werpy TA, Petersen G (2004) Top value added chemicals from biomass 2004. U.S. Department of Energy, Washington, DC

    Google Scholar 

  4. Huber GW, Chheda JN, Barrett CJ, Dumesic JA (2005) Science 308:1446–1450

    Article  CAS  Google Scholar 

  5. Rinaldi R, Schuth F (2009) Energy Environ Sci 2:610–626

    Article  CAS  Google Scholar 

  6. Binder JB, Blank JJ, Cefali AV, Raines RT (2010) ChemSusChem 3:1268–1272

    Article  CAS  Google Scholar 

  7. Gurbuz EI, Wettstein SG, Dumesic JA (2012) ChemSusChem 5:383–387

    Article  Google Scholar 

  8. Pagan-Torres YJ, Wang TF, Gallo JMR, Shanks BH, Dumesic JA (2012) ACS Catal 2:930–934

    Article  CAS  Google Scholar 

  9. Antunes MM, Lima S, Fernandes A, Pillinger M, Ribeiro MF, Valente AA (2012) Appl Catal A 417:243–252

    Article  Google Scholar 

  10. Lima S, Antunes MM, Fernandes A, Pillinger M, Ribeiro MF, Valente AA (2010) Appl Catal A 388:141–148

    Article  CAS  Google Scholar 

  11. Shi XJ, Wu YL, Yi HF, Rui G, Li PP, Yang MD, Wang GH (2011) Energies 4:669–684

    Article  CAS  Google Scholar 

  12. Dias AS, Pillinger M, Valente AA (2005) J Catal 229:414–423

    Article  CAS  Google Scholar 

  13. Tucker MH, Crisci AJ, Wigington BN, Phadke N, Alamillo R, Zhang J, Scott SL, Dumesic JA (2012) ACS Catal 2:1865–1876

    Article  CAS  Google Scholar 

  14. Hespell RB (1998) J Agric Food Chem 46:2615–2619

    Article  CAS  Google Scholar 

  15. Doner LW, Hicks KB (1997) Cereal Chem 74:176–181

    Article  CAS  Google Scholar 

  16. Lonyi F, Valyon J (2001) Thermochim Acta 373:53–57

    Article  CAS  Google Scholar 

  17. Wakayama T, Matsuhashi H (2005) J Mol Catal A 239:32–40

    Article  CAS  Google Scholar 

  18. Yang Y, Hu CW, Abu-Omar MM (2012) ChemSusChem 5:405–410

    Article  CAS  Google Scholar 

  19. Gurbuz EI, Gallo JM, Alonso DM, Wettstein SG, Lim WY, Dumesic JA (2013) Angew Chem 52:1270–1274

    Article  Google Scholar 

  20. Alonso DM, Gallo JMR, Mellmer M, Wettstein S, Dumesic JA (2012) Catal Sci Technol 3:927–931

    Article  Google Scholar 

  21. Roman-Leshkov Y, Chheda JN, Dumesic JA (2006) Science 312:1933–1937

    Article  CAS  Google Scholar 

  22. Choudhary V, Pinar AB, Sandler SI, Vlachos DG, Lobo RF (2011) ACS Catal 1:1724–1728

    Article  CAS  Google Scholar 

  23. Weingarten R, Tompsett GA, Conner WC, Huber GW (2011) J Catal 279:174–182

    Article  CAS  Google Scholar 

  24. Holm MS, Pagan-Torres YJ, Saravanamurugan S, Riisager A, Dumesic JA, Taarning E (2012) Green Chem 14:702–706

    Article  CAS  Google Scholar 

  25. Choudhary V, Sandler SI, Vlachos DG (2012) ACS Catal 2:2022–2028

    Article  CAS  Google Scholar 

  26. Kubicka D, Kumar N, Maki-Arvela P, Tiitta M, Niemi V, Karhu H, Sami T, Murzin DY (2004) J Catal 227:313–327

    Article  CAS  Google Scholar 

  27. Wettstein SG, Alonso DM, Chong YX, Dumesic JA (2012) Energy Environ Sci 5:8199–8203

    Article  CAS  Google Scholar 

  28. Alonso DM, Wettstein SG, Mellmer MA, Gurbuz EI, Dumesic JA (2013) Energy Environ Sci 6:76–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the U.S. Department of Energy Office of Basic Energy Sciences, and by the DOE Great Lakes Bioenergy Research Center (www.greatlakesbioenergy.org), which is supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, through Cooperative Agreement DE-FC02-07ER64494 between The Board of Regents of the University of Wisconsin System and the U.S. Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Dumesic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gallo, J.M.R., Alonso, D.M., Mellmer, M.A. et al. Production of Furfural from Lignocellulosic Biomass Using Beta Zeolite and Biomass-Derived Solvent. Top Catal 56, 1775–1781 (2013). https://doi.org/10.1007/s11244-013-0113-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-013-0113-3

Keywords

Navigation