Skip to main content

Advertisement

Log in

Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

We have developed a ReaxFF reactive force field to describe hydrogen adsorption and dissociation on iron and iron carbide surfaces relevant for simulation of Fischer–Tropsch (FT) synthesis on iron catalysts. This force field enables large system (>>1000 atoms) simulations of hydrogen related reactions with iron. The ReaxFF force field parameters are trained against a substantial amount of structural and energetic data including the equations of state and heats of formation of iron and iron carbide related materials, as well as hydrogen interaction with iron surfaces and different phases of bulk iron. We have validated the accuracy and applicability of ReaxFF force field by carrying out molecular dynamics simulations of hydrogen adsorption, dissociation and recombination on iron and iron carbide surfaces. The barriers and reaction energies for molecular dissociation on these two types of surfaces have been compared and the effect of subsurface carbon on hydrogen interaction with iron surface is evaluated. We found that existence of carbon atoms at subsurface iron sites tends to increase the hydrogen dissociation energy barrier on the surface, and also makes the corresponding hydrogen dissociative state relatively more stable compared to that on bare iron. These properties of iron carbide will affect the dissociation rate of H2 and will retain more surface hydride species, thus influencing the dynamics of the FT synthesis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dry ME (2002) Catal Today 71:227–241

    Article  CAS  Google Scholar 

  2. Davis BH (2003) Catal Today 84:83–98

    Article  CAS  Google Scholar 

  3. Bozso F, Ertl G, Grunze M, Weiss M (1977) Appl Surf Sci 1:103–119

    Article  CAS  Google Scholar 

  4. Burke ML, Madix RJ (1990) Surf Sci 237:20–34

    Article  CAS  Google Scholar 

  5. Merrill PB, Madix RJ (1996) Surf Sci 347:249–264

    Article  CAS  Google Scholar 

  6. Benziger J, Madix RJ (1980) Surf Sci 94:119–153

    Article  CAS  Google Scholar 

  7. Benziger JB, Madix RJ (1982) Surf Sci 115:279–289

    Article  CAS  Google Scholar 

  8. Blyholder G, Head J, Ruette F (1983) Surf Sci 131:403–418

    Article  CAS  Google Scholar 

  9. Walch SP (1984) Surf Sci 143:188–203

    Article  CAS  Google Scholar 

  10. Raeker TJ, DePristo AE (1990) Surf Sci 235:84–106

    Article  CAS  Google Scholar 

  11. Jiang DE, Carter EA (2003) Surf Sci 547:85–98

    Article  CAS  Google Scholar 

  12. Jiang DE, Carter EA (2004) Phys Rev B 70:64102–64110

    Article  Google Scholar 

  13. Sorescu DC (2005) Catal Today 105:44–65

    Article  CAS  Google Scholar 

  14. Mueller JE, van Duin ACT, Goddard WA III (2009) J Phys Chem C 113:20290–20306

    Article  CAS  Google Scholar 

  15. Lo JMH, Ziegler T (2007) J Phys Chem C 111:11012–11025

    Article  CAS  Google Scholar 

  16. Ono S, Mibeb K (2010) Phys Earth Planet Inter 180:1–6

    Article  CAS  Google Scholar 

  17. Sorescu DC, Thompson DL, Hurley MM, Chabalowski CF (2002) Phys Rev B 66:035416–035428

    Article  Google Scholar 

  18. Lo JMH, Ziegler T (2007) J Phys Chem C 111:13149–13162

    Article  CAS  Google Scholar 

  19. Bromfield TC, Ferre DC, Niemantsverdriet JW (2005) Chemphyschem 6:254–260

    Article  CAS  Google Scholar 

  20. Jiang DE, Carter EA (2003) Phys Rev B 67:214103–214113

    Article  Google Scholar 

  21. Jiang DE, Carter EA (2004) Surf Sci 570:164–177

    Article  Google Scholar 

  22. Sorescu DC (2008) J Phys Chem C 112:10472–10489

    Article  CAS  Google Scholar 

  23. Sorescu DC (2006) Phys Rev B 73:15536–155420

    Article  Google Scholar 

  24. Mayo SL, Olafson BD, Goddard WA III (1990) J Phys Chem 94:8897–8909

    Article  CAS  Google Scholar 

  25. van Duin ACT, Dasgupta S, Lorant F, Goddard WA III (2001) J Phys Chem A 105:9396–9409

    Article  Google Scholar 

  26. Raymand D, van Duin ACT, Baudin M, Hermansson K (2008) Surf Sci 602:1020–1031

    Article  CAS  Google Scholar 

  27. Zhang Q, Cagin T, van Duin ACT, Goddard WA III, Qi Y, Hector LG (2004) Phys Rev B 69:045423–045433

    Article  Google Scholar 

  28. Cheung S, Deng W-Q, van Duin ACT, Goddard WA III (2005) J Phys Chem A 109:851–859

    Article  CAS  Google Scholar 

  29. Ojwang JGO, Santen RV, Kramer GJ, van Duin ACT, Goddard WA III (2008) J Chem Phys 128:164714–164722

    Article  CAS  Google Scholar 

  30. Han SS, van Duin ACT, Goddard WA III, Lee HM (2005) J Phys Chem A 109:4575–4582

    Article  CAS  Google Scholar 

  31. Goddard WA III, van Duin ACT, Chenoweth K, Cheng M-J, Pudar S, Oxgaard J, Merinov B, Jang YH, Persson P (2006) Top Catal 38:93–103

    Article  CAS  Google Scholar 

  32. Ramasubramaniam A, Itakura M, Carter EA (2009) Phys Rev B 79:174101–174103

    Article  Google Scholar 

  33. Mueller JE, van Duin ACT, Goddard WA III (2010) J Phys Chem C 114:4939–4949

    Article  CAS  Google Scholar 

  34. Aryanpour M, van Duin ACT, Kubicki JD (2010) J Phys Chem A 114:6298–6307

    Article  CAS  Google Scholar 

  35. Blochl PE (1994) Phys Rev B 50:17953–17979

    Article  Google Scholar 

  36. Moroni EG, Kresse G, Hafner J (1997) Phys Rev B 56:15629–15646

    Article  CAS  Google Scholar 

  37. Murnaghan FD (1944) Proc Natl Acad Sci 30:244–247

    Article  CAS  Google Scholar 

  38. Henkelman G, Uberuaga BP, Jónsson H (2000) J Chem Phys 113:9901–9904

    Article  CAS  Google Scholar 

  39. Sorescu DC (2009) J Phys Chem C 113:9256–9274

    Article  CAS  Google Scholar 

  40. Mortier WJ, Ghosh SK, Shankar S (1986) J Am Chem Soc 108:4315–4320

    Article  CAS  Google Scholar 

  41. Janssens GOA, Baekelandt BG, Toufar H, Mortier WJ, Schoonheydt RA (1995) J Phys Chem 99:3251–3258

    Article  CAS  Google Scholar 

  42. van Duin ACT, Baas JMA, van de Graaf B (1994) J Chem Soc Faraday Trans 90:2881–2895

    Article  Google Scholar 

  43. Acet M, Zahres H, Wassermann EF (1994) Phys Rev B 49:6012–6017

    Article  CAS  Google Scholar 

  44. Blonski P, Kiejna A (2007) Surf Sci 601:123–133

    Article  CAS  Google Scholar 

  45. Henriksson KOE, Sandberg N, Wallenius J (2008) Appl Phys Lett 93:191215–191912

    Article  Google Scholar 

  46. Miyamoto G, Oh JC, Hono K, Furuhara T, Maki T (2007) Acta Mater 55:5027–5038

    Article  CAS  Google Scholar 

  47. Tkacz M (2002) J Alloys Compd 330–332:25–28

    Article  Google Scholar 

Download references

Acknowledgments

This work is funded by National Energy Technology Laboratory-Regional University Association (NETL-RUA). RES activity number 0004000.662.884.001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adri C. T. van Duin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, C., van Duin, A.C.T. & Sorescu, D.C. Theoretical Investigation of Hydrogen Adsorption and Dissociation on Iron and Iron Carbide Surfaces Using the ReaxFF Reactive Force Field Method. Top Catal 55, 391–401 (2012). https://doi.org/10.1007/s11244-012-9796-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-012-9796-0

Keywords

Navigation