Skip to main content

Advertisement

Log in

Influence of Drying Conditions on Amine-Functionalized SBA-15 as Adsorbent of CO2

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Adsorption of pure CO2 on amine-functionalized SBA-15 mesoporous silica materials has been studied. Adsorbent materials were prepared by grafting the silica surface with aminopropyl (AP), ethylene-diamine (ED) and diethylene-triamine (DT) organosilane molecules. Materials so obtained were dried under air atmosphere at 110 °C and at room temperature. CO2 adsorption isotherms were carried out at 45 °C, showing that grafted materials are very efficient for CO2 removal at atmospheric pressure when samples are dried at 20 º C. However, when the drying step is carried out at 110 °C in air, CO2 adsorption capacity is low. DRIFTS analysis has shown that amino groups can undergo oxidation to oxime or imine species during drying. Adsorption capacity of the materials was found to be unchanged after some consecutive adsorption–desorption cycles, being the regeneration step performed at 110 °C under vacuum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. IPCC (1990) In: Houghton JT, Jenkins GJ, Ephraims JJ (eds) IPCC first assessment report (FAR). IPCC, New York

  2. Pachauri RK, Reisinger A (eds) (2007) IPCC Fourth Assessment Report: Climate Change 2007 (AR4). IPCC, Geneva

  3. Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) (2005) IPCC special report on carbon dioxide capture and storage. IPCC, Cambridge

  4. Kyoto Protocol to the United Nations framework convention on Climate Change. United Nations, 1998

  5. The economics of adaptation to climate change (2009) World Bank, Bangkok

  6. Astarita G (1961) Chem Eng Sci 16:202–207

    Article  CAS  Google Scholar 

  7. Maddox RN, Mains GJ, Rahman MA (1987) Ind Eng Chem Res 26:27–31

    Article  CAS  Google Scholar 

  8. Rinker EB, Ashour SS, Sandall OC (2000) Ind Eng Chem Res 39:4346–4356

    Article  CAS  Google Scholar 

  9. Carbon sequestration. State of Science. (1999) Office of Science and Office of Fossil Energy. US Department of Energy. DOE/OS-FE, Washington DC

  10. Tontiwachwuthikul P, Meisen A, Lim CJJ (1991) Chem Eng Data 36:130–133

    Article  CAS  Google Scholar 

  11. Douglas A, Costas T (2005) Sep Sci Technol 40:321–348

    Article  Google Scholar 

  12. Sanz R, Calleja G, Arencibia A, Sanz-Pérez ES (2010) Appl Surf Sci 256:5323–5328

    Article  CAS  Google Scholar 

  13. Caplow M (1968) J Am Chem Soc 24:6795–6803

    Article  Google Scholar 

  14. Oye G, Sjoblom J, Stocker M (2001) Adv Colloid Interface Sci 89:439–466

    Article  Google Scholar 

  15. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548–552

    Article  CAS  Google Scholar 

  16. Xu X, Song C, Andrésen JM, Miller BG, Scaroni AW (2002) Energy Fuel 16:1463–1469

    Article  CAS  Google Scholar 

  17. Xu X, Song C, Andrésen JM, Miller BG, Scaroni AW (2003) Microporous Mesoporous Mater 62:29–45

    Article  CAS  Google Scholar 

  18. Xu X, Song C, Miller BG, Scaroni AW (2005) Ind Eng Chem Res 44:8113–8119

    Article  CAS  Google Scholar 

  19. Wang X, Schwartz V, Clark JC, Ma X, Overbury SH, Xu X, Song C (2009) J Phys Chem C 113:7260–7268

    Article  CAS  Google Scholar 

  20. Son WJ, Choi JS, Ahn WS (2008) Microporous Mesoporous Mater 113:31–40

    Article  CAS  Google Scholar 

  21. Chen C, Yang ST, Ahn WS, Ryoo R Chem Commun (2009) 3627–3629

  22. Fauth DJ, Filburn TP, Gray ML, Hedges SW, Hoffman JS, Pennline HW, DOE/NETL-IR-2007-156

  23. Liu SH, Wu CH, Lee HK, Liu SB (2010) Top Catal 53:210–217

    Article  CAS  Google Scholar 

  24. Su F, Lu C, Kuo S-C, Zeng W (2010) Energy Fuel 24:1441–1448

    Article  CAS  Google Scholar 

  25. Bhagiyalakshmi M, Yun LJ, Anuradha R, Jang HT (2010) J Hazard Mater 175:928–938

    Article  CAS  Google Scholar 

  26. Fisher JC, Tanthana J, Chuang SSC (2009) Environ Prog Sustain Energy 28:589–598

    Article  CAS  Google Scholar 

  27. Yue MB, Sun LB, Cao Y (2008) Microporous Mesoporous Mater 114:74–81

    Article  CAS  Google Scholar 

  28. Yue MB, Chun Y, Cao Y (2006) Adv Funct Mater 16:1717–1722

    Article  CAS  Google Scholar 

  29. Chong ASM, Zhao XS (2003) J Phys Chem B 107:12650–12657

    Article  CAS  Google Scholar 

  30. Aguado J, Arsuaga JM, Arencibia A, Lindo M, Gascón V (2009) J Hazard Mater 163:213–221

    Article  CAS  Google Scholar 

  31. Leal O, Bolívar C, Ovalles C, García JJ, Espidel Y (1995) Inorg Chim Acta 240:183–189

    Article  CAS  Google Scholar 

  32. Huang HY, Yang RT (2003) Ind Eng Chem Res 42:2427–2433

    Article  CAS  Google Scholar 

  33. Knowles GP, Graham JV, Delaney SW, Chaffee AL (2005) Fuel Process Technol 86:1435–1448

    Article  CAS  Google Scholar 

  34. Knowles GP, Delaney SW, Chaffee AL (2005) Stud Surf Sci Catal 156:887–896

    Article  CAS  Google Scholar 

  35. Knowles GP, Delaney SW, Chaffee AL (2006) Ind Eng Chem Res 45:2626–2633

    Article  CAS  Google Scholar 

  36. Harlick PJE, Sayari A (2007) Ind Eng Chem Res 46:446–458

    Article  CAS  Google Scholar 

  37. Van der Voort P, Gills-D’Hamers I, Vrancken KC, Vansant EF (1991) Faraday Trans 87:3899–3905

    Article  Google Scholar 

  38. Drage TC, Blackman JM, Pevida C, Snape CE (2009) Energy Fuel 23:2790–2796

    Article  CAS  Google Scholar 

  39. Cavenati S, Grande CA, Rodrigues AE (2004) J Chem Eng Data 19:1095–1101

    Article  Google Scholar 

  40. Socrates G (2001) Infrared and Raman characteristic group frequencies. Wiley, UK

  41. Ishikawa N, Kitazume T (1972) Chem Lett 169–170

  42. Kimura M, Kuroda Y, Yamamoto O, Kubo M (1961) Bull Chem Soc Jpn 34:1081–1086

    Article  CAS  Google Scholar 

  43. Lebel NA, Banucci E (1971) J Org Chem 36:2440–2448

    Article  CAS  Google Scholar 

  44. Armor JN (1982) U.S. Patent 4.337.358

  45. Armor JN, Zambri PM (1982) J Catal 73:57–65

    Article  CAS  Google Scholar 

  46. Matsumura Y, Hashimoto K, Moffat JB (1992) J Phys Chem 96:10448–10449

    Article  CAS  Google Scholar 

  47. Trejda M, Ziolek M, Decyk P, Duczmal D (2009) Microporous Mesoporous Mater 120:214–220

    Article  CAS  Google Scholar 

  48. Xie Y, Sharma KK, Anan A, Wang G, Biradar AV, Asefa T (2009) J Catal 265:131–140

    Article  CAS  Google Scholar 

  49. Khatri RA, Chuang SSC, Soong Y, Gray M (2006) Energy Fuel 20:1514–1520

    Article  CAS  Google Scholar 

  50. Wei J, Shi J, Pan H, Su Q, Zhu J, Shi Y (2009) Microporous Mesoporous Mater 117:596–602

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out within the framework of the CENIT CO2 Project, supported by CDTI—Spanish Industry Department (www.cenitco2.es).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Calleja.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, G., Sanz, R., Arencibia, A. et al. Influence of Drying Conditions on Amine-Functionalized SBA-15 as Adsorbent of CO2 . Top Catal 54, 135–145 (2011). https://doi.org/10.1007/s11244-011-9652-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-011-9652-7

Keywords

Navigation