Skip to main content
Log in

Catalysis by Mesoporous Dendrimers

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The present study reports the divergent synthesis, characterization and catalytic properties of different generation of triazine based aromatic amine dendritic mesoporous silicas derived via a stepwise functionalization of mesoporous silica substrates of different pore sizes with 2,4,6 tricholorotriazine and ethylene diamine. Mesoporous dendritic silicas up to second generation (2G) are grown in side the channels of mesoporous silica materials with 4 and 7 nm pore sizes. The catalytic properties of resulted dendritic materials in Knoevenagel condensation reaction were compared to the aliphatic polyamidoamine dendrimers that are also grown up to second generation (2G) inside the mesoporous channels. The reusability study of both aliphatic and aromatic dendritic mesoporous silica systems is also compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Newkome GR, Moorefield CN, Vogtle F (2001) Dendrimers and dendrons: concepts, synthesis, applications. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Tomila DA, Taylor AN, Goddard WA (1990) Angew Chem Int Ed Engl 29:138–175

    Article  Google Scholar 

  3. Vlatakis G, Andrson LI, Muller R, Mosbach K (1993) Nature 361:645–647

    Article  CAS  Google Scholar 

  4. Frechet JMJ (1994) Science 263:1710–1715

    Article  CAS  Google Scholar 

  5. Zeng F, Zimmerman SC (1997) Chem Rev 97:402–413

    Article  Google Scholar 

  6. Gorman C (1998) Adv Mater 10:295–309

    Article  CAS  Google Scholar 

  7. Newkome GR, He E, Moorefield CN (1999) Chem Rev 99:1689–1746

    Article  CAS  Google Scholar 

  8. Astruc D, Chardec F (2001) Chem Rev 101:2991–3024

    Article  CAS  Google Scholar 

  9. Zimmerman SC, Wendland MS, Rakow NA, Zharov I, Suslick KS (2002) Nature 418:399–403

    Article  CAS  Google Scholar 

  10. Ooe M, Murata M, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:1604–1605

    Article  CAS  Google Scholar 

  11. Liu Y, Bruening ML, Bergbreiter DE, Crooks RM (1997) Angew Chem Int Ed Engl 36:2114–2116

    Article  CAS  Google Scholar 

  12. Liu Y, Zhao M, Bergbreiter DE, Crooks RM (1997) J Am Chem Soc 119:8720–8721

    Article  CAS  Google Scholar 

  13. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JC (1992) Nature 359:710–712

    Article  CAS  Google Scholar 

  14. Scott RWJ, Datye AK, Crooks RM (2003) J Am Chem Soc 125:3708–3709

    Article  CAS  Google Scholar 

  15. Zhao M, Sun L, Crooks RM (1998) J Am Chem Soc 120:4877–4878

    Article  CAS  Google Scholar 

  16. Bourque SC, Alper H, Manzer LE, Arya P (2000) J Am Chem Soc 122:956–957

    Article  CAS  Google Scholar 

  17. Bourque SC, Maltais F, Xiao WJ, Tardif O, Alper H, Arya P, Manzer LE (1999) J Am Chem Soc 121:3035–3038

    Article  CAS  Google Scholar 

  18. Antebi S, Arya P, Manzer LE, Alper H (2002) J Org Chem 67:6623–6624

    Article  CAS  Google Scholar 

  19. Reynhardt JPK, Alper H (2003) J Org Chem 68:8353–8360

    Article  CAS  Google Scholar 

  20. Reynhardt JPK, Yang Y, Sayari A, Alper H (2004) Chem Mater 16:4095–4102

    Article  CAS  Google Scholar 

  21. Reynhardt JPK, Yang Y, Sayari A, Alper H (2005) Adv Funct Mater 15:1641–1646

    Article  CAS  Google Scholar 

  22. Ottaviani MF, Turro NJ, Jockusch S, Tomila DA (2003) J Phy Chem 107:2046–2053

    Article  CAS  Google Scholar 

  23. Kapoor MP, Kasama Y, Yokoyama T, Yanagi M, Inagaki S, Nanbu H, Juneja LR (2006) J Mater Chem 16:4714–4722

    Article  CAS  Google Scholar 

  24. Diaz I, Garcia B, Alonso B, Casado CM, Moran M, Lasada J, Perez-Pariente J (2002) Chem Mater 15:1073–1079

    Article  CAS  Google Scholar 

  25. Acosta EJ, Carr CS, Simanek EE, Shantz DF (2004) Adv Mater 16:985

    Article  CAS  Google Scholar 

  26. Landskron K, Ozin GA (2004) Science 306:1529–1532

    Article  CAS  Google Scholar 

  27. Inagaki S, Koiwai A, Suzuki N, Fukushima Y, Kuroda K (1996) Bull Chem Soc Jpn 69:1449–1457

    Article  CAS  Google Scholar 

  28. Kruk M, Jaroneic M, Sayari A (1999) J Phys Chem B 103:4590–4598

    Article  CAS  Google Scholar 

  29. Tsubokawa N, Ichioka H, Satoh T, Hayashi S, Fujiki K (1998) React Funct Polym 37:75–82

    Article  CAS  Google Scholar 

  30. Knoevenagel E (1894) Chem Ber 27:2345–2347

    Article  Google Scholar 

  31. Jones G (1967) Org React 15:204–206

    CAS  Google Scholar 

  32. Rand L, Haidukewych D, Dolinski RJ (1966) J Org Chem 31:1272–1274

    Article  CAS  Google Scholar 

  33. Muzart J (1982) Synthesis 60:1–3

    Google Scholar 

  34. Richardhein W, Melvin J (1961) J Org Chem 26:4874

    Article  Google Scholar 

  35. Texier-Boullet F, Foucaud A (1982) Tetrahedron Lett 23:4927–4928

    Article  CAS  Google Scholar 

  36. Moison H, Texier-Boullet F, Foucaud A (1987) Tetrahedron 43:537–542

    Article  CAS  Google Scholar 

  37. Angeletti E, Canepa C, Martinetti P, Venurello J (1989) Chem Soc Perkin Trans 1:105–107

    Google Scholar 

  38. Subba Rao YV, Choudary BM (1991) Synth Commun 21:1163–1166

    Article  Google Scholar 

  39. Corma A, Fornes V, Martin-Aranda RM, Rey F (1992) J Catal 134:58–65

    Article  CAS  Google Scholar 

  40. Kloetsstra KR, van Bekkum H (1995) J Chem Soc Chem Commun 1005–1006

  41. Shin Y, Liu JL, Wang Q, Nie Z, Samuels WD, Fryxell GE, Esarhos GJ (2000) Angew Chem Int Ed 39:2702–2707

    Article  CAS  Google Scholar 

  42. Macquarrie DJ, Jackson DB (1997) J Chem Soc Chem Commun 1781–1782

  43. Liu J, Shin Y, Nie Z, Chang JH, Wang LQ, Fryxell GE, Samuels WD, Esarhos GJ (2000) J Phys Chem B 104:8328–8339

    CAS  Google Scholar 

  44. Macquarrie DJ (1996) J Chem Soc Chem Commun 1961–1962

  45. Lasperas M, Liorett T, Chaves L, Rodriguez I, Cauvel A, Brunel D (1997) Stud Surf Sci Catal 108:75–82

    Article  CAS  Google Scholar 

  46. Choudary BM, Kantam ML, Sreekanth P, Bandopadhyay T, Figueras F, Tuel A (1999) J Mol Catal A: Chem 142:361–365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahendra P. Kapoor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapoor, M.P., Kuroda, H., Yanagi, M. et al. Catalysis by Mesoporous Dendrimers. Top Catal 52, 634–642 (2009). https://doi.org/10.1007/s11244-009-9221-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-009-9221-5

Keywords

Navigation