Skip to main content

Advertisement

Log in

Green Catalysis with Alternative Feedstocks

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The use of renewable feedstocks, derived from biomass, for the chemical industry is discussed. The modern chemical industry is based around platform chemicals, e.g. ethene, propene, benzene and xylenes, which are readily derived from oil, and using these intermediates a broad range of finished products can be derived. While it is feasible that biomass can be converted to syngas and hence to existing key platform chemicals, this loses all of the chemical complexity that is inherent in bio-derived molecules. In this paper some of the options are considered and, in particular, the oxidation of glucose and glycerol using gold nanoparticles supported on carbon is described. We also contrast the oxidation of glycerol using supported gold and gold–palladium alloys prepared using an impregnation technique, since the gold–palladium alloys have been shown to be highly effective for the oxidation of alcohols and the synthesis of hydrogen peroxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chang CD, Silvestri AJ (1977) J Catal 47:249

    Article  CAS  Google Scholar 

  2. Enache DI, Edwards JK, Landon P, Solsona-Espriu B, Carley AF, Herzing AA, Watanabe M, Kiely CJ, Knight DW, Hutchings GJ (2006) Science 311:362

    Article  CAS  Google Scholar 

  3. Landon P, Collier PJ, Papworth AJ, Kiely CJ, Hutchings GJ (2002) Chem Commun 2058

  4. Landon P, Collier PJ, Carley AF, Chadwick D, Papworth AJ, Burrows A, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1917

    Article  CAS  Google Scholar 

  5. Solsona BE, Edwards JK, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2006) Chem Mater 18:2689

    Article  CAS  Google Scholar 

  6. Edwards JK, Solsona B, Landon P, Carley AF, Herzing A, Watanabe M, Kiely CJ, Hutchings GJ (2005) J Mater Chem 15:4595

    Article  CAS  Google Scholar 

  7. Edwards JK, Solsona BE, Landon P, Carley AF, Herzing A, Kiely CJ, Hutchings GJ (2005) J Catal 236:69

    Article  CAS  Google Scholar 

  8. Edwards JK, Carley AF, Herzing AA, Kiely CJ, Hutchings GJ (2008) Faraday Disc 138:225

    Article  CAS  Google Scholar 

  9. Lopez-Sanchez JA, Dimitratos N, Miedziak P, Ntainjua E, Edwards JK, Morgan D, Carley AF, Tiruvalam R, Kiely CJ, Hutchings GJ (2008) Phys Chem Chem Phys 10:1921

    Article  CAS  Google Scholar 

  10. Gallezot P (2007) Catal Today 121:76

    Article  CAS  Google Scholar 

  11. Coombs J, Hall K (1998) Renewable Energy 15:54

    Article  CAS  Google Scholar 

  12. Lichtenhaler FW, Mondel S (1997) Pure Appl Chem 69:1853

    Article  Google Scholar 

  13. Huber GW, Dumesic JA (2006) Catal Today 111:119

    Article  CAS  Google Scholar 

  14. Weisz PB, Haag WO, Rodewald PG (1979) Science 206:57

    Article  CAS  Google Scholar 

  15. Chen NY, Degnan JTF, Koenig LR (1986) Chem Technol 16:506

    CAS  Google Scholar 

  16. Berl E (1944) Science 99:309

    Article  CAS  Google Scholar 

  17. Elliott DC, Beckman D, Bridgwater AV, Diebold JP, Gevert SB, Solantausta Y (1991) Energy Fuels 5:399

    Article  CAS  Google Scholar 

  18. Klass DL (1998) Biomass for renewable energy, fuels and chemicals. Academic Press, San Diego

    Google Scholar 

  19. Larsson R, Folkesson B, Spaziante PM, Veerasai W, Exell RHB (2006) Renewable Energy 31:549

    Article  CAS  Google Scholar 

  20. Wilhelm DJ, Simbeck DR, Karp AD, Dickenson RL (2001) Fuel Process Technol 71:139

    Article  CAS  Google Scholar 

  21. Stöcker M (1999) Micro Meso Mater 29:3

    Article  Google Scholar 

  22. Smith BE (2002) Science 297:1654

    Article  CAS  Google Scholar 

  23. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Green Chem 10:13

    Article  CAS  Google Scholar 

  24. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405

    Article  Google Scholar 

  25. Haruta M, Yamada N, Kobayashi T, Iijima S (1989) J Catal 115:301

    Article  CAS  Google Scholar 

  26. Hutchings GJ (1985) J Catal 96:292

    Article  CAS  Google Scholar 

  27. Nkosi B, Coville NJ, Hutchings GJ (1988) Appl Catal 43:33

    Article  CAS  Google Scholar 

  28. Nkosi B, Coville NJ, Hutchings GJ, Adams MD, Friedl J, Wagner F (1991) J Catal 128:366

    Article  CAS  Google Scholar 

  29. Haruta M (2004) Gold Bull 37:27

    CAS  Google Scholar 

  30. Hughes MD, Xu Y-J, Jenkins P, McMorn P, Landon P, Enache DI, Carley AF, Attard GA, Hutchings GJ, King F, Stitt EH, Johnston P, Griffin K, Kiely CJ (2005) Nature 437:1132

    Article  CAS  Google Scholar 

  31. Hayashi T, Tanaka K, Haruta M (1998) J Catal 178:566

    Article  CAS  Google Scholar 

  32. Haruta M, Date M (2001) Appl Catal A 222:427

    Article  CAS  Google Scholar 

  33. Abad A, Conception P, Corma A, Garcia H (2005) Angew Chem Int Ed 44:4066

    Article  CAS  Google Scholar 

  34. Guzman J, Gates BC (2003) Angew Chem Int Ed 42:690

    Article  CAS  Google Scholar 

  35. Okumura M, Akita T, Haruta M (2002) Catal Today 74:265

    Article  CAS  Google Scholar 

  36. Jia J, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104:11153

    Article  CAS  Google Scholar 

  37. Lopez-Sanchez JA, Lennon D (2005) Appl Catal A 291:230

    Article  CAS  Google Scholar 

  38. Schimpf S, Lucas M, Mohr C, Rodemerck U, Bruckner A, Radnik J, Hofmeister H, Claus P (2002) Catal Today 72:63

    Article  CAS  Google Scholar 

  39. Mohr C, Hofmeister H, Claus P (2003) J Catal 213:86

    Article  CAS  Google Scholar 

  40. Okumura M, Akita T, Haruta M (2002) Catal Today 74:265

    Article  CAS  Google Scholar 

  41. Bailie JE, Abdullah HA, Anderson JA, Rochester CH, Richardson NV, Hodge N, Zhang JG, Burrows A, Kiely JC, Hutchings GJ (2001) Phys Chem Chem Phys 3:4113

    Article  CAS  Google Scholar 

  42. Zanella R, Louis C, Giorgio S, Touroude R (2004) J Catal 223:328

    Article  CAS  Google Scholar 

  43. Prati L, Rossi M (1998) J Catal 176:552

    Article  CAS  Google Scholar 

  44. Porta F, Prati L, Rossi M, Colluccia S, Martra G (2000) Catal Today 61:165

    Article  CAS  Google Scholar 

  45. Prati L (1999) Gold Bull 32:96

    CAS  Google Scholar 

  46. Christensen CH, Jorgensen B, Raas-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A (2006) Angew Chem Int Ed 45:46

    Article  Google Scholar 

  47. Nielsen IS, Taarning E, Egeblad K, Madsen R, Christensen CH (2007) Cat Lett 116:35

    Article  CAS  Google Scholar 

  48. Corma A, Domine ME (2005) Chem Comm 4042

  49. Mori K, Hara T, Mizugaki T, Ebitani K, Kaneda K (2004) J Am Chem Soc 126:10657

    Article  CAS  Google Scholar 

  50. Comotti M, Della Pina C, Matarrese R, Rossi M, Siani A (2005) Appl Catal A 291:204

    Article  CAS  Google Scholar 

  51. Beltrame P, Comotti M, Della Pina C, Rossi M (2006) Appl Catal A 297:1

    Article  CAS  Google Scholar 

  52. Biella S, Prati L, Rossi M (2002) J Catal 206:242

    Article  CAS  Google Scholar 

  53. Comotti M, Della Pina C, Falletta E, Rossi M (2006) J Catal 244:122

    Article  CAS  Google Scholar 

  54. Dimitratos N, Porta F, Prati L, Villa A (2005) Catal Lett 99:181

    Article  CAS  Google Scholar 

  55. Miltenberger K (1989) In: Elvers B, Hawkins S, Ravenscroft M, Rounsaville JF, Schulz G (eds) Ullmann’s encyclopedia of industrial chemistry, vol A 13. VCH, Weinheim, p 507

  56. Bauer R, Hekmat D (2006) Biotechnol Prog 22:278

    Article  CAS  Google Scholar 

  57. Kimura H, Tsuto K, Wakisaka T, Kazumi Y, Inaya Y (1993) Appl Catal A 96:217

    Article  CAS  Google Scholar 

  58. Abbadi A, Bekkum HV (1996) Appl Catal A 148:113

    Article  CAS  Google Scholar 

  59. Garcia R, Besson M, Gallezot P (1995) Appl Catal A 127:165

    Article  CAS  Google Scholar 

  60. Fordham P, Garcia R, Besson M, Gallezot P (1996) Stud Surf Sci Catal 101:161

    Article  CAS  Google Scholar 

  61. Fordham P, Garcia R, Besson M, Gallezot P (1995) Appl Catal A 133:L179

    Article  CAS  Google Scholar 

  62. Carrettin S, McMorn P, Johnston P, Griffin K, Hutchings GJ (2002) Chem Commun 696

  63. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Attard GA, Hutchings GJ (2004) Top Catal 27:131

    Article  CAS  Google Scholar 

  64. Carrettin S, McMorn P, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2003) Phys Chem Chem Phys 5:1329

    Article  CAS  Google Scholar 

  65. Carretin S, McMorn P, Jenkins P, Attard GA, Johnston P, Griffin K, Kiely CJ, Hutchings GJ (2006) ACS Symp Ser (Feedstocks for the future), vol 921, p 82

  66. Herzing AA, Watanabea M, Edwards JK, Conte M, Tang Z, Hutchings GJ, Kiely CJ (2008) Faraday Discuss 138:337

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge the European Union (Project AURICAT; Contract HPRN-CT-2002-00174) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham J. Hutchings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dimitratos, N., Lopez-Sanchez, J.A. & Hutchings, G.J. Green Catalysis with Alternative Feedstocks. Top Catal 52, 258–268 (2009). https://doi.org/10.1007/s11244-008-9162-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-008-9162-4

Keywords

Navigation