Skip to main content
Log in

Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

This paper discusses the mechanisms of surface area loss of supported platinum (Pt) electrocatalysts in low-temperature fuel cells. It is argued that submonolayer dissolution of Pt nanoparticles governs the surface area loss at high voltages by increasing the loss of Pt from carbon and coarsening of Pt nanoparticles on carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Appl Catal B 56:9

    Article  CAS  Google Scholar 

  2. Gasteiger H, Gu W, Makharia R, Mathias MF, Sompalli B (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol. 3. John Wiley & Sons, Chichester, UK, pp 593

    Google Scholar 

  3. Matthias M, Gasteiger H, Makharia R, Kocha S, Fuller T, Pisco (2004) J Prepr Pap-Am Chem Soc Div Fuel Chem 49:471

    Google Scholar 

  4. Antolini E (2003) J Mater Sci 38:2995

    Article  CAS  Google Scholar 

  5. Mukerjee S, Srinivasan S (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. John Wiley & Sons, Chichester, UK pp 503

    Google Scholar 

  6. Auer E, Freund A, Pietsch J, Tacke T (1998) Appl Catal A 173:259

    Article  CAS  Google Scholar 

  7. Skriver HL, Rosengaard NM (1992) Phys Rev B 46:7157

    Article  CAS  Google Scholar 

  8. Foiles SM, Baskes MI, Daw MS (1986) Phys Rev B 33:7983

    Article  CAS  Google Scholar 

  9. Frenken JWM, Stoltze P (1999) Phys Rev Lett 82:3500

    Article  CAS  Google Scholar 

  10. Sattler ML, Ross PN (1986) Ultramicroscopy 20:21

    Article  CAS  Google Scholar 

  11. Ferreira PJ, Shao-Horn Y (2007) Electrochem Solid-State Lett 10:B60

    Article  CAS  Google Scholar 

  12. Kinoshita K (1990) J Electrochem Soc 137:845

    Article  CAS  Google Scholar 

  13. Antolini E, Giorgi L, Cardellini F, Passalacqua E (2001) J Solid State Electrochem 5:131

    Article  CAS  Google Scholar 

  14. Markovic NM, Radmilovic V, Ross PN (2003) In: Wieckowski A, Savinova ER, Vayenas CG (eds) Physical and electrochemical characterization of bimetallic nanoparticles electrocatalysts, catalysis and electrocatalysis at nanoparticles surfaces. Marcel Dekker, New York and Basel, pp 311

    Google Scholar 

  15. Ferreira PJ, la O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger H (2005) J Electrochem Soc 152:A2256

    Article  Google Scholar 

  16. Shao-Horn Y, Ferreira P, la O GJ, Morgan D, Gasteiger HA, Makharia R (2006) ECS Trans 1:185

    Article  CAS  Google Scholar 

  17. Merzougui B, Swathirajan S (2006) J Electrochem Soc 153:A2220

    Article  CAS  Google Scholar 

  18. Landsman DA, Luczak FJ (2003) In: Vielstich W, Lamm A, Gasteiger H (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 4. John Wiley & Sons, Chichester, UK, pp 811

    Google Scholar 

  19. Aragane J, Murahashi T, Odaka T (1988) J Electrochem Soc 135:844

    Article  CAS  Google Scholar 

  20. Honji A, Mori T, Tamura K, Hishinuma Y (1988) J Electrochem Soc 135:355

    Article  CAS  Google Scholar 

  21. Blurton KF, Kunz HR, Rutt DR (1978) Electrochim Acta 23:183

    Article  CAS  Google Scholar 

  22. Fowler MW, Mann RF, Amphlett JC, Peppley BA, Roberge PR (2002) J Power Sources 106:274

    Article  CAS  Google Scholar 

  23. Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) J Power Sources 127:127

    Article  CAS  Google Scholar 

  24. Wilson MS, Garzon FH, Sickafus KE, Gottesfeld S (1993) J Electrochem Soc 140:2872

    Article  CAS  Google Scholar 

  25. Tada T, Kikinzoku T (2003) In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. John Wiley and Sons, p 481

  26. Xie J, Wood DL, Wayne DM, Zawodzinski TA, Atanassov P, Borup RL (2005) J Electrochem Soc 152:A104

    Article  CAS  Google Scholar 

  27. Xie J, Wood DL, More KL, Atanassov P, Borup RL (2005) J Electrochem Soc 152:A1011

    Article  Google Scholar 

  28. Akita T, Taniguchi A, Maekawa J, Sirorna Z, Tanaka K, Kohyama M, Yasuda K (2006) J Power Sources 159:461

    Article  CAS  Google Scholar 

  29. Bett JAS, Kinoshita K, Stonehart P (1976) J Catal 41:124

    Article  CAS  Google Scholar 

  30. Gruver GA, Pascoe RF, Kunz HR (1980) J Electrochem Soc 127:1219

    Article  CAS  Google Scholar 

  31. Ruckenstein E, Pulvermacher B (1973) J Catal 29:224

    Article  CAS  Google Scholar 

  32. Granqvist CC, Buhrman RA (1976) J Catal 42:477

    Article  CAS  Google Scholar 

  33. Tseung ACC, Vassie PR (1976) Electrochimica Acta 21:315

    Article  CAS  Google Scholar 

  34. Lifshitz IM, Slyozov VV (1961) J Phys Chem Solids 19:35

    Article  Google Scholar 

  35. Wagner C (1961) Z Elektrochem 65:581

    CAS  Google Scholar 

  36. Voorhees PW (1985) J Stat Phys 38:231

    Article  Google Scholar 

  37. Ross PN Jr (1987) In: Petersen EE, Bell AT (eds) Catalyst deactivation. Marcel Dekker, New York, p 165

    Google Scholar 

  38. Aragane J, Urushibata H, Murahashi T (1996) J Appl Electrochem 26:147

    Article  CAS  Google Scholar 

  39. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) J Electrochem Soc 153:A1599

    Article  CAS  Google Scholar 

  40. Kinoshita K, Lundquis JT, Stonehar P (1973) J Electroanal Chem 48:157

    Article  CAS  Google Scholar 

  41. Patternson T (2002) In: Igwe GJ, Mah D (eds) Fuel cell technology topical conference proceedings, 2002 AIChE Spring National Meeting (March 10–14), New York, p 313

  42. Darling RM, Meyers JP (2003) J Electrochem Soc 150:A1523

    Article  CAS  Google Scholar 

  43. Darling RM, Meyers JP (2005) J Electrochem Soc 152:A242

    Article  CAS  Google Scholar 

  44. Yasuda K, Taniguchi A, Akita T, Ioroi T, Siroma Z (2006) Phys Chem Chem Phys 8:746

    Article  CAS  Google Scholar 

  45. Pourbaix M (1966) Atlas of electrochemical equilibria in aqueous solutions. Pergamon Press, Oxford

    Google Scholar 

  46. Bindra P, Clouser SJ, Yeager E (1979) J Electrochem Soc 126:1631

    Article  CAS  Google Scholar 

  47. Wang XP, Kumar R, Myers DJ (2006) Electrochem Solid-State Lett 9:A225

    Article  CAS  Google Scholar 

  48. Ota K-i, Koizumi Y, Mitsushima S, Kamiya N (2006) ECS Trans 3:619

    Article  CAS  Google Scholar 

  49. Bett JA, Kinoshita K, Stonehart P (1974) J Catal 35:307

    Article  CAS  Google Scholar 

  50. Makharia R, Kocha SS, Yu PT, Sweikart MA, Gu W, Wagner FT, Gasteiger HA (2006) ECS Trans 1:3

    Article  CAS  Google Scholar 

  51. Stevens DA, Hicks MT, Haugen GM, Dahn JR (2005) J Electrochem Soc 152:A2309

    Article  CAS  Google Scholar 

  52. Wynblatt P, Gjostein NA (1975) In: McCaldin JO, Somorjai G (eds) Progress in solid state chemistry, vol 9. Pergamon, New York pp 21

    Google Scholar 

  53. Ehrburger P, Lahaye J (1984) Abstr Paper Am Chem Soc 187:28

    Google Scholar 

  54. Guilminot E, Corcella A, Charlot F, Maillard F, Chatenet M (2007) J Electrochem Soc 154:B96

    Article  CAS  Google Scholar 

  55. Chen J, Chan KY (2005) Mol Simul 31:527

    Article  CAS  Google Scholar 

  56. Phillips WB, Desloge EA, Skofronick JG (1968) J Appl Phys 39:3210

    Article  CAS  Google Scholar 

  57. Jensen P, Blase X (2004) Phys Rev B 70:165402

    Google Scholar 

  58. Wang XP, Kumar R, Kariuki N, Myers DJ (2007) J Electrochem Soc (unpublished)

  59. Anderson GM, Crerar DA (1993) Thermodynamics in geochemistry. Oxford University Press, New York

    Google Scholar 

  60. Komanicky V, Chang KC, Menzel A, Markovic NM, You H, Wang X, Myers D (2006) J Electrochem Soc 153:B446

    Article  CAS  Google Scholar 

  61. Jerkiewicz G, Vatankhah G, Lessard J, Soriaga MP, Park YS (2004) Electrochimica Acta 49:1451

    CAS  Google Scholar 

  62. Alsabet M, Grden M, Jerkiewicz G (2006) J Electroanal Chem 589:120

    Article  CAS  Google Scholar 

  63. Ota KI, Nishigori S, Kamiya N (1988) J Electroanal Chem 257:205

    Article  CAS  Google Scholar 

  64. Rand DAJ, Woods R (1972) J Electroanal Chem 35:209

    Article  CAS  Google Scholar 

  65. Rose TL, Robblee LS (1990) IEEE Trans Biomed Eng 37:1118

    Article  CAS  Google Scholar 

  66. Woods R (1976) In: Bard AJ (eds) Electroanalytical chemistry, vol 9. Marcel Dekker, New York pp 1

    Google Scholar 

  67. Angerste H, Conway BE, Sharp WBA (1973) J Electroanal Chem 43:9

    Article  Google Scholar 

  68. Allen GC, Tucker PM, Capon A, Parsons R (1974) J Electroanal Chem 50:335

    Article  CAS  Google Scholar 

  69. Hammond JS, Winograd N (1977) J Electroanal Chem 78:55

    Article  CAS  Google Scholar 

  70. Nagy Z, You H (2002) Electrochim Acta 47:3037

    Article  CAS  Google Scholar 

  71. Lupis CHP (1983) Chemical thermodynamics of materials. North Holland, New York

    Google Scholar 

  72. Holby E, Morgan D, Shao-Horn Y (2007) (unpublished)

  73. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Science 315:220

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Some Pt/C and aged MEA samples used in this study were obtained from GM Fuel Cell Activities. The authors thank P. Strasser for providing the TKK Pt/C 28 wt% sample used in this study, and H.A. Gasteiger, R. Makharia, S. Kocha, F. Wagner, D. Myers, J.P. Meyers, R. Darling, and D. Rolison for stimulating discussion. This work is supported by the DOE Hydrogen Initiative program under award number DE-FG02-05ER15728, and made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation under award number DMR 02-13282. Y.S.H. acknowledges financial support from GM Fuel Cell Activities and an Air Products Faculty Excellence grant and D.M. gratefully acknowledges a 3M Nontenured Faculty Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shao-Horn.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(PDF 1017 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shao-Horn, Y., Sheng, W.C., Chen, S. et al. Instability of Supported Platinum Nanoparticles in Low-Temperature Fuel Cells. Top Catal 46, 285–305 (2007). https://doi.org/10.1007/s11244-007-9000-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-007-9000-0

Keywords

Navigation