Skip to main content
Log in

Study of the low-temperature reaction between CO and O2 over Pd and Pt surfaces

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Field electron microscopy (FEM), high-resolution electron energy loss spectroscopy (HREELS), molecular beams (MB) and temperature-programmed reaction (TPR) have been applied to the study of the kinetics of CO oxidation at low temperature, and to determine the roles of subsurface atomic oxygen (Osub) and surface reconstruction in self-oscillatory phenomena, on Pd(111), Pd(110) and Pt(100) single crystals and on Pd and Pt tip surfaces. It was found that high local concentrations of adsorbed CO during the transition from a Pt(100)-hex reconstructed surface to the unreconstructed 1×1 phase apparently prevents oxygen atoms from occupying hollow sites on the surface, and leads to the appearance of a weakly bound active adsorbed atomic oxygen (Oads) state in an on-top or bridge position. It was also inferred that subsurface oxygen Osub on the Pd(110) surface may play an important role in the formation of new active sites for the weakly bound Oads atoms. Experiments with 18O isotope labeling clearly show that the weakly bound atomic oxygen is the active form of oxygen that reacts with CO to form CO2 at T ∼140–160 K. Sharp tips of Pd and Pt, several hundreds angstroms in diameter, were used to perform in situ investigations of dynamic surface processes. The principal conclusion from those studies was that non–linear reaction kinetics is not restricted to macroscopic planes since: (i) planes as small as ∼200 Å in diameter show the same non-linear kinetics as larger flat surfaces; (ii) regular waves appear under conditions leading to reaction rate oscillations; (iii) the propagation of reaction–diffusion waves involves the participation of different crystal nanoplanes via an effective coupling between adjacent planes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • G. Ertl (1990) Adv. Catal. 37 213

    Google Scholar 

  • R. Imbihl (1993) Progr. Surf. Sci. 44 185 Occurrence Handle10.1016/0079-6816(93)90086-B

    Article  Google Scholar 

  • B.E. Nieuwenhuys (1999) Adv. Catal. 44 259

    Google Scholar 

  • V. Gorodetskii J. Lauterbach H.-H. Rotermund J.H. Block G. Ertl (1994) Nature 370 276 Occurrence Handle10.1038/370276a0

    Article  Google Scholar 

  • J. Liu M. Xu T. Nordmeyer F. Zaera (1995) J. Phys. Chem. 99 6167

    Google Scholar 

  • J. Liu M. Xu F. Zaera (1996) Catal. Lett. 37 9 Occurrence Handle10.1007/BF00813512

    Article  Google Scholar 

  • M. Xu J. Liu F. Zaera (1996) J. Chem. Phys. 104 8825 Occurrence Handle10.1063/1.471606

    Article  Google Scholar 

  • F. Zaera J. Liu M. Xu (1997) J. Chem. Phys. 106 4204 Occurrence Handle10.1063/1.473126

    Article  Google Scholar 

  • F. Zaera (2002) Acc. Chem. Res. 35 129 Occurrence Handle10.1021/ar000193v

    Article  Google Scholar 

  • F. Zaera (2002) Int. Rev. Phys. Chem. 21 433 Occurrence Handle10.1080/01442350210156033

    Article  Google Scholar 

  • C.S. Gopinath F. Zaera (2001) J. Catal. 200 270 Occurrence Handle10.1006/jcat.2001.3215

    Article  Google Scholar 

  • C.S. Gopinath F. Zaera (1999) J. Catal. 186 387 Occurrence Handle10.1006/jcat.1999.2561

    Article  Google Scholar 

  • T. Matsushima (1983) Surf. Sci. 127 403 Occurrence Handle10.1016/0039-6028(83)90038-9

    Article  Google Scholar 

  • T. Zambelli J.V. Barth J. Wintterlin G. Ertl (1997) Nature 390 495 Occurrence Handle10.1038/37329

    Article  Google Scholar 

  • A.F. Carley P.R. Davies M.W. Roberts (2002) Catal. Lett. 80 25 Occurrence Handle10.1023/A:1015314424172

    Article  Google Scholar 

  • V.V. Gorodetskii W. Drachsel (1999) Appl. Catal. A: Gen. 188 267 Occurrence Handle10.1016/S0926-860X(99)00212-4

    Article  Google Scholar 

  • F. Zaera (2002) Surf. Sci. 500 949 Occurrence Handle10.1016/S0039-6028(01)01531-X

    Article  Google Scholar 

  • M.Yu. Smirnov D. Zemlyanov V.V. Gorodetskii E.I. Vovk (1998) Surf. Sci. 414 409 Occurrence Handle10.1016/S0039-6028(98)00533-0

    Article  Google Scholar 

  • P.D. Cobden B.E. Nieuwenhuys V.V. Gorodetskii (1999) Appl. Catal. A: Gen. 188 69 Occurrence Handle10.1016/S0926-860X(99)00233-1

    Article  Google Scholar 

  • Yu. Suchorski R. Imbihl V.K. Medvedev (1998) Surf. Sci. 401 392 Occurrence Handle10.1016/S0039-6028(98)00043-0

    Article  Google Scholar 

  • R.J. Behm P.A. Thiel P.R. Norton G. Ertl (1983) J. Chem. Phys. 78 7437 Occurrence Handle10.1063/1.444734

    Article  Google Scholar 

  • J. Schmidt Ch. Stuhlmann H. Ibach (1993) Surf. Sci. 284 121 Occurrence Handle10.1016/0039-6028(93)90530-W

    Article  Google Scholar 

  • R. Martin P. Gardner A. M. Bradshaw (1995) Surf. Sci. 342 69 Occurrence Handle10.1016/0039-6028(95)00679-6

    Article  Google Scholar 

  • A. Borg A.M. Hilmen E. Bergene (1994) Surf. Sci. 306 10 Occurrence Handle10.1016/0039-6028(94)91179-7

    Article  Google Scholar 

  • H.P. Bonzel G. Broden G. Pirug (1978) J. Catal. 53 96 Occurrence Handle10.1016/0021-9517(78)90010-6

    Article  Google Scholar 

  • V.V. Gorodetskii A.V. Matveev P.D. Cobden B.E. Nieuwenhuys (2000) J. Mol. Catal. A: Chem. 158 155 Occurrence Handle10.1016/S1381-1169(00)00060-1

    Article  Google Scholar 

  • C.E. Wartnaby A. Stuck Y.Y. Yeo D.A. King (1995) J. Chem. Phys. 102 1855 Occurrence Handle10.1063/1.468714

    Article  Google Scholar 

  • A. Hopkinson X.-C. Guo J.M. Bradley D.A. King (1993) J. Chem. Phys. 99 8262 Occurrence Handle10.1063/1.465652

    Article  Google Scholar 

  • A. Eichler J. Hafner (1999) Phys. Rev. B 59 5960 Occurrence Handle10.1103/PhysRevB.59.5960

    Article  Google Scholar 

  • J.-W. He P.R. Norton (1988) Surf. Sci. 204 26 Occurrence Handle10.1016/0039-6028(88)90265-8

    Article  Google Scholar 

  • M. Ehsasi, C. Seidel, H. Ruppender, W. Drachsel and J.H. Block, K. Christmann, Surf. Sci. 210 (1989) L198.

  • H. Conrad G. Ertl J. Küppers (1978) Surf. Sci. 76 323 Occurrence Handle10.1016/0039-6028(78)90101-2

    Article  Google Scholar 

  • T. Engel G. Ertl (1979) Adv. Catal. 28 1

    Google Scholar 

  • S. Ladas R. Imbihl G. Ertl (1993) Surf. Sci. 280 14 Occurrence Handle10.1016/0039-6028(93)90352-K

    Article  Google Scholar 

  • I.Z. Jones R.A. Bennett M. Bowker (1999) Surf. Sci. 439 235 Occurrence Handle10.1016/S0039-6028(99)00782-7

    Article  Google Scholar 

  • J.M. Gottfried K.J. Schmidt S.L.M. Schroeder K. Christmann (2003) Surf. Sci. 525 197 Occurrence Handle10.1016/S0039-6028(02)02559-1

    Article  Google Scholar 

  • F. Zaera C.S. Copinath (2000) Chem. Phys. Lett. 332 209 Occurrence Handle10.1016/S0009-2614(00)01247-1

    Article  Google Scholar 

  • Y.-S. Lim M. Berdau M. Naschitzki M. Ehsasi J.H. Block (1994) J. Catal. 149 292 Occurrence Handle10.1006/jcat.1994.1297

    Article  Google Scholar 

  • M. Eiswirth R. Schwankner G. Ertl (1985) Z. Phys. Chem. 144 59

    Google Scholar 

  • G. Ertl, P.R. Norton and J. Rustig, Phys. Rev. Lett. 4a (1982) 171.

  • V. Gorodetskii J.H. Block W. Drachsel M. Ehsasi (1993) Appl. Surf. Sci. 67 198 Occurrence Handle10.1016/0169-4332(93)90312-Y

    Article  Google Scholar 

  • H.H. Rotermund S. Jakubith A. von Oertzen G. Ertl (1991) Phys. Rev. Lett. 66 3038 Occurrence Handle10.1103/PhysRevLett.66.3083

    Article  Google Scholar 

  • J. Lauterbach H.H. Rotermund (1994) Surf. Sci. 311 231 Occurrence Handle10.1016/0039-6028(94)90494-4

    Article  Google Scholar 

  • V.V. Gorodetskii A.V. Matveev A.V. Kalinkin B.E. Nieuwenhuys (2003) Chem. Sustain. Develop. 11 67

    Google Scholar 

  • E.I. Latkin V.I. Elokhin A.V. Matveev V.V. Gorodetskii (2000) J. Mol. Catal. A: Chem. 158 161 Occurrence Handle10.1016/S1381-1169(00)00061-3

    Article  Google Scholar 

  • V.I. Elokhin E.I. Latkin A.V. Matveev V.V. Gorodetskii (2003) Kinet. Catal. 44 692 Occurrence Handle10.1023/A:1026106509151

    Article  Google Scholar 

  • M.P. Cox G. Ertl R. Imbihl (1985) Phys. Rev. Lett. 54 1725 Occurrence Handle10.1103/PhysRevLett.54.1725

    Article  Google Scholar 

  • R. Imbihl M.P. Cox G. Ertl H. Muller W. Brenig (1985) J. Chem. Phys. 83 1578 Occurrence Handle10.1063/1.449834

    Article  Google Scholar 

  • R. Imbihl M.P. Cox G. Ertl (1986) J. Chem. Phys. 84 3519 Occurrence Handle10.1063/1.450238

    Article  Google Scholar 

  • D.A. King (1994) Surf. Rev. Lett. 1 43 Occurrence Handle10.1142/S0218625X94000400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zaera.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorodetskii, V.V., Matveev, A.V., Podgornov, E.A. et al. Study of the low-temperature reaction between CO and O2 over Pd and Pt surfaces. Top Catal 32, 17–28 (2005). https://doi.org/10.1007/s11244-005-9255-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-005-9255-2

Keywords

Navigation