Skip to main content
Log in

A series of heterobimetallic Ni(II)–Ln(III) (Ln = La, Ce, Pr and Nd) coordination polymers derived from 3-EtOsalamo and dicarboxylates: syntheses, crystal structures and fluorescence properties

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four coordination polymers 2 [Ni(DMF)(L)Ln(bdc)1.5] (Ln = La (1) and Nd (4)) and 2 [Ni2(DMF)2(L)2Ln2(bdc)3]·CH3OH (Ln = Ce (2) and Pr (3)) were derived from a symmetrical salamo-based ligand (H2L) with Ni(OAc)2·4H2O, Ln(NO3)3·6H2O (Ln = La, Ce, Pr and Nd), and H2bdc (terephthalic acid). Coordination polymers 14 were synthesized and characterized by elemental analyses, X-ray single crystal diffraction, infrared spectroscopy and ultraviolet–visible absorption spectroscopy. Coordination polymers 14 have similar structures exhibiting two-dimensional coordination polymers with brick wall in which [Ni(DMF)(L)Ln] units were linked by exodentate (bdc)2− linker. In each unit, Ni(II) atoms adopted a slightly distorted octahedral geometry, the Ln(III) atoms were nine-coordinated, and the coordination polyhedron was a distorted tricapped trigonal prism. The crystal structure and supramolecular features were discussed in detail. At the same time, the fluorescent properties of coordination polymers 14 were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. O’Meara C, Polozhentceva IA, Karushev MP, Dharmasena S, Cho H, Yurkovich BJ, Kogan S, Kim JH (2019) ACS Appl Mater Interfaces 11:525–533

    PubMed  Google Scholar 

  2. Martins TS, Bott-Neto JL, Raymundo-Pereira PA, Ticianelli EA, Machado SAS (2018) Sens Actuators B 276:378–387

    CAS  Google Scholar 

  3. Nunes M, Araújo M, Fonseca J, Moura C, Hillman R, Freire C (2016) ACS Appl Mater Interfaces 8:14231–14243

    CAS  PubMed  Google Scholar 

  4. Zhang Y, Yu M, Pan YQ, Zhang Y, Xu L, Dong WK (2020) Appl Organomet Chem 34:e5442

    CAS  Google Scholar 

  5. An XX, Liu C, Chen ZZ, Xie KF, Zhang Y (2019) Crystals 9:602

    CAS  Google Scholar 

  6. Hemmat K, Nasseri MA, Allahresani A (2019) Chem Sel 4:4339–4346

    CAS  Google Scholar 

  7. Kobayashi Y, Obayashi R, Watanabe Y, Miyazaki H, Miyata I, Suzuki Y, Yoshida Y, Shioiri T, Matsugi M (2019) Eur J Org Chem 13:2401–2408

    Google Scholar 

  8. Zhou JJ, Song XQ, Liu YA, Wang XL (2017) RSC Adv 7:25549–25559

    CAS  Google Scholar 

  9. Akine S (2012) J Incl Phenom Macrocycl Chem 72:25–54

    CAS  Google Scholar 

  10. Pan YQ, Xu X, Zhang Y, Zhang Y, Dong WK (2020) Spectrochim Acta A 229:117917

    Google Scholar 

  11. Hao J, Li XY, Zhang Y, Dong WK (2018) Materials 11:523

    PubMed Central  Google Scholar 

  12. Wang L, Wei ZL, Chen ZZ, Liu C, Dong WK, Ding YJ (2020) Microchem J 155:104801

    CAS  Google Scholar 

  13. Liu LZ, Wang L, Yu M, Zhao Q, Zhang Y, Sun YX, Dong WK (2019) Spectrochim Acta A 222:117209

    CAS  Google Scholar 

  14. Wei ZL, Wang L, Wang JF, Guo WT, Zhang Y, Dong WK (2020) Spectrochim Acta A 228:117775

    CAS  Google Scholar 

  15. Lebedeva MA, Chamberlain TW, Davies ES, Mancel D, Thomas BE, Suyetin M, Bichoutskaia E, Schröder M, Khlobystov AN (2013) Chem Eur J 19:11999–12008

    CAS  PubMed  Google Scholar 

  16. Abd El Sater M, Jaber N, Schulz E (2019) Chem Cat Chem 11:3662–3687

    CAS  Google Scholar 

  17. White DE, Tadross PM, Lu Z, Jacobsen EN (2014) Tetrahedron 70:4165–4180

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Łępicka K, Pieta P, Francius G, Walcarius A, Kutner W (2019) Electrochim Acta 315:75–83

    Google Scholar 

  19. Griffiths K, Gallop CWD, Abdul-Sada A, Vargas A, Navarro O, Kostakis GE (2015) Chem Eur J 21:6358–6361

    CAS  PubMed  Google Scholar 

  20. Griffiths K, Kumar P, Mattock JD, Abdul-Sada A, Pitak MB, Coles SJ, Navarro O, Vargas A, Kostakis GE (2016) Inorg Chem 55:6988–6994

    CAS  PubMed  Google Scholar 

  21. Griffiths K, Kumar P, Akien GR, Chilton NF, Abdul-Sada A, Tizzard GJ, Coles SJ, Kostakis GE (2016) Chem Commun 52:7866–7869

    CAS  Google Scholar 

  22. Griffiths K, Tsipis ATC, Kumar P, Townrow OPE, Abdul-Sada A, Akien GR, Baldansuren A, Spivey AC, Kostakis GE (2017) Inorg Chem 56:9563–9573

    CAS  PubMed  Google Scholar 

  23. Sampani SI, McGown A, Vargas A, Abdul-Sada A, Tizzard GJ, Coles SJ, Spencer J, Kostakis GE (2019) J Org Chem 84:6858–6867

    CAS  PubMed  Google Scholar 

  24. Liu C, An XX, Cui YF, Xie KF, Dong WK (2020) Appl Organomet Chem 34:e5272

    CAS  Google Scholar 

  25. Pan YQ, Zhang Y, Yu M, Zhang Y, Wang L (2020) Appl Organomet Chem 34:e5441

    CAS  Google Scholar 

  26. An XX, Zhao Q, Mu HR, Dong WK (2019) Crystals 9:101

    CAS  Google Scholar 

  27. Li XY, Kang QP, Liu C, Zhang Y, Dong WK (2019) New J Chem 43:4605–4619

    CAS  Google Scholar 

  28. Chang J, Zhang SZ, Wu Y, Zhang HJ, Sun YX (2020) Transit Met Chem 45:279–293

    CAS  Google Scholar 

  29. Kuznetsov N, Yang P, Gorislov G, Zhukov Y, Bocharov V, Malev V, Levin O (2018) Electrochim Acta 271:190–202

    CAS  Google Scholar 

  30. Zhang LW, Liu LZ, Wang F, Dong WK (2018) Molecules 23:1141

    PubMed Central  Google Scholar 

  31. Song XQ, Liu PP, Liu YA, Zhou JJ, Wang XL (2016) Dalton Trans 45:8154–8163

    CAS  PubMed  Google Scholar 

  32. Arthur JL, Min KS, Miller JS (2019) J Magn Magn Mater 489:165375–165381

    CAS  Google Scholar 

  33. Deawati Y, Onggo D, Mulyani I, Hastiawan I, Kurnia D, Lönnecke P, Schmorl S, Kersting B, Hey-Hawkins E (2018) Inorg Chim Acta 482:353–357

    CAS  Google Scholar 

  34. Hwang K, Kim H, Lee Y, Lee M, Do Y (2009) Chem-Eur J 15:6478–6487

    CAS  PubMed  Google Scholar 

  35. Wu HL, Bai YC, Zhang YH, Pan GL, Kong J, Shi F, Wang XL (2014) Z Anorg Allg Chem 640:2062–2071

    CAS  Google Scholar 

  36. Wu HL, Pan GL, Bai YC, Wang H, Kong J, Shi FR, Zhang YH, Wang XL (2015) Res Chem Intermed 41:3375–3388

    CAS  Google Scholar 

  37. Wu HL, Wang CP, Wang F, Peng HP, Zhang H, Bai YC (2018) J Chin Chem Soc 62:1028–1034

    Google Scholar 

  38. Inba PJK, Annaraj B, Thalamuthu S, Neelakantan MA (2013) Spectrochim Acta A 104:300–309

    Google Scholar 

  39. Peng YD, Wang F, Gao L, Dong WK (2018) J Chin Chem Soc 65:893–899

    CAS  Google Scholar 

  40. Kang QP, Li XY, Zhao Q, Ma JC, Dong WK (2018) Appl Organomet Chem 32:e4379

    Google Scholar 

  41. Yu M, Zhang Y, Pan YQ, Wang L (2020) Inorg Chim Acta 509:119701

    CAS  Google Scholar 

  42. Zhang SZ, Chang J, Zhang HJ, Sun YX, Wu Y, Wang YB (2020) Chin J Inorg Chem 36:503–514

    CAS  Google Scholar 

  43. Asadi Z, Mandegani Z, Asadi M, Pakiari AH, Salarhaji M, Manassir M, Karbalaei-Heidari HR, Rastegari B, Sedaghat M (2019) Spectrochim Acta A 206:278–294

    CAS  Google Scholar 

  44. Ozkan G, Kose M, Zengin H, McKee V, Kurtoglu M (2015) Spectrochim Acta A 150:966–973

    CAS  Google Scholar 

  45. Wang F, Liu LZ, Gao L, Dong WK (2018) Spectrochim Acta A 203:56–64

    CAS  Google Scholar 

  46. Kang QP, Li XY, Wang L, Zhang Y, Dong WK (2019) Appl Organomet Chem 33:e5013

    Google Scholar 

  47. Kang QP, Li XY, Wei ZL, Zhang Y, Dong WK (2019) Polyhedron 165:38–50

    CAS  Google Scholar 

  48. Zhang LW, Zhang Y, Cui YF, Yu M, Dong WK (2020) Inorg Chim Acta 506:119534

    CAS  Google Scholar 

  49. Bruker (2016) APEX3, SAINT and SADABS. Bruker AXS Inc., Madison

    Google Scholar 

  50. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) J Appl Cryst 42:339–341

    CAS  Google Scholar 

  51. Sheldrick GM (2015) Acta Cryst A71:3–8

    Google Scholar 

  52. Sheldrick GM (2015) Acta Cryst C71:3–8

    Google Scholar 

  53. Zhao Q, An XX, Liu LZ, Dong WK (2019) Inorg Chim Acta 490:6–15

    CAS  Google Scholar 

  54. Liu LZ, Yu M, Li XY, Kang QP, Dong WK (2019) Chin J Inorg Chem 35:1283–1294

    CAS  Google Scholar 

  55. Ren ZL, Hao J, Hao P, Dong XY, Bai Y, Dong WK (2019) Z Naturforsch B 73:203–210

    Google Scholar 

  56. Zhang LW, Li XY, Kang QP, Liu LZ, Ma JC, Dong WK (2018) Crystals 8:173

    CAS  Google Scholar 

  57. Yu M, Mu HR, Liu LZ, Li N, Bai Y, Dong XY (2019) Chin J Inorg Chem 35:1109–1120

    CAS  Google Scholar 

  58. Sun YX, Pan YQ, Xu X, Zhang Y (2019) Crystals 9:607

    CAS  Google Scholar 

  59. Li J, Zhang HJ, Chang J, Jia HR, Sun YX, Huang YQ (2018) Crystals 8:176

    CAS  Google Scholar 

  60. Chang J, Zhang HJ, Jia HR, Sun YX (2018) Chin J Inorg Chem 34:2097–2107

    CAS  Google Scholar 

  61. Dong XY, Kang QP, Li XY, Ma JC, Dong WK (2018) Crystals 8:139

    Google Scholar 

  62. Jia HR, Chang J, Zhang HJ, Li J, Sun YX (2018) Crystals 8:272

    Google Scholar 

  63. Lindbäck E, Norouzi-Arasi H, Sheibani E, Ma D, Dawaigher S, Wärnmark K (2019) Chem Select 1:1789

    Google Scholar 

  64. Zhang HJ, Chang J, Jia HR, Sun YX (2018) Chin J Inorg Chem 34:2261–2270

    CAS  Google Scholar 

  65. Dong XY, Zhao Q, Wei ZL, Mu HR, Zhang H, Dong WK (2018) Molecules 23:1006

    PubMed Central  Google Scholar 

  66. Dong XY, Zhao Q, Kang QP, Li XY, Dong WK (2018) Crystals 8:230

    Google Scholar 

  67. Zhang Y, Liu LZ, Peng YD, Li N, Dong WK (2019) Transit Met Chem 44:627–639

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21761018) and the Program for Excellent Team of Scientific Research in Lanzhou Jiaotong University (201706), which are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, YJ., Guo, SZ. et al. A series of heterobimetallic Ni(II)–Ln(III) (Ln = La, Ce, Pr and Nd) coordination polymers derived from 3-EtOsalamo and dicarboxylates: syntheses, crystal structures and fluorescence properties. Transit Met Chem 45, 485–492 (2020). https://doi.org/10.1007/s11243-020-00400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-020-00400-0

Navigation