Skip to main content

Advertisement

Log in

Synthesis of copper(II) and zinc(II) complexes with chalcone–thiosemicarbazone hybrid ligands: X-ray crystallography, spectroscopy and yeast activity

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Four chalcone–thiosemicarbazones (C-TSCs) of the type 2-((E)-3-(4-R-phenyl)-1-phenylallylidene)-N-phenylhydrazinecarbothioamide, where R = Cl (HL1), NO2 (HL2), CH3 (HL3) or CN (HL4), were prepared in good yields from the reaction of the respective chalcone with 4-phenyl-3-thiosemicarbazide and HCl in EtOH. Reaction of HL with CuCl2·2H2O or ZnCl2 in the presence of Et3N afforded the complexes [M(L)2], M = Cu(II) or Zn(II). X-ray diffraction analysis revealed that the ligands coordinate in their deprotonated form, in a bidentate fashion through the iminic nitrogen and sulfur atoms. Yeast activities of the compounds were tested, where the ligand HL4 was the most damaging derivative, exhibiting cell viability at about 50%. On the other hand, lipid peroxidation assays revealed that the ligand HL1 was able to better induce membrane damage compared to the other compounds. It has been found that coordination with Cu(II) and Zn(II) did not increase the biological activities of the C-TSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Beraldo H, Gambino D (2004) The wide pharmacological versatility of semicarbazones, thiosemicarbazones and their metal complexes. Mini Rev Med Chem 4:31–39

    Article  CAS  Google Scholar 

  2. Yu Y, Kalinowski DS, Kovacevic Z, Siafakas AR, Jansson PJ, Stefani C, Lovejoy DB, Sharpe PC, Bernhardt PV, Richardson DR (2009) Thiosemicarbazones from the old to new: iron chelators that are more than just ribonucleotide reductase inhibitors. J Med Chem 52:5271–5294

    Article  CAS  Google Scholar 

  3. Mendes IC, Moreira JP, Mangrich AS, Balena SP, Rodrigues BL, Beraldo H (2007) Coordination to copper(II) strongly enhances the in vitro antimicrobial activity of pyridine-derived N(4)-tolyl thiosemicarbazones. Polyhedron 26:3263–3270

    Article  CAS  Google Scholar 

  4. Kovala-Demertzi D, Yadav PN, Wiecek J, Skoulika S, Varadinova T, Demertzis MA (2006) Zinc(II) complexes derived from pyridine-2-carbaldehyde thiosemicarbazone and (1E)-1-pyridin-2-ylethan-1-one thiosemicarbazone: synthesis, crystal structures and antiproliferative activity of zinc(II) complexes. J Inorg Biochem 100:1558–1567

    Article  CAS  Google Scholar 

  5. Singh P, Anand A, Kumar V (2014) Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 85:758–777

    Article  CAS  Google Scholar 

  6. Verma CP, Kumar KS, Aravindhakshan KK (2017) Synthesis, characterization and pharmacological activity of complexes of Cu(II), Ni(II), Mn(II) and Co(II) from chalcone N(4)-methyl(phenyl)thiosemicarbazone. J Pharm Sci Res 9:1444–1449

    Google Scholar 

  7. Zhang HJ, Qian Y, Zhu DD, Yang XG, Zhu HL (2011) Synthesis, molecular modeling and biological evaluation of chalcone thiosemicarbazide derivatives as novel anticancer agents. Eur J Med Chem 46:4702–4708

    Article  CAS  Google Scholar 

  8. Da Silva JG, Recio Despaigne AA, Louro SRW, Bandeira CC, Souza-Fagundes EM, Beraldo H (2013) Cytotoxic activity, albumin and DNA binding of new copper(II) complexes with chalcone-derived thiosemicarbazones. Eur J Med Chem 65:415–426

    Article  Google Scholar 

  9. Da Silva JG, Perdigão CCH, Speziali NL, Beraldo H (2013) Chalcone-derived thiosemicarbazones and their zinc(II) and gallium(III) complexes: spectral studies and antimicrobial activity. J Coord Chem 66:385–401

    Article  Google Scholar 

  10. Tan MY, Crouse KA, Ravoof TBSA, Jotaniand MM, Tiekink ERT (2017) 1-{(E)-[(2E)-3-(4-Methoxyphenyl)-1-phenylprop-2en-1-ylidene]amino}-3-phenylurea: crystal structure and Hirshfeld surface analysis. Acta Crystallogr Sect E 73:1607–1611

    Article  CAS  Google Scholar 

  11. Tan MY, Crouse KA, Ravoof TBSA, Tiekink ERT (2015) Crystal structure of 1-{(Z)-[(2E)-3-(4chlorophenyl)-1-phenylprop-2-en-1-ylidene]amino}-3-ethylthiourea. Acta Crystallogr Sect E 71:1047–1048

    Article  Google Scholar 

  12. Viñuelas-Zahínos E, Luna-Giles F, Torres-García P, Fernández-Calderón MC (2011) Co(III), Ni(II), Zn(II) and Cd(II) complexes with 2-acetyl-2-thiazoline thiosemicarbazone: synthesis, characterization, X-ray structures and antibacterial activity. Eur J Med Chem 46:150–159

    Article  Google Scholar 

  13. Pahontu E, Julea F, Rosu T, Purcarea V, Chumakov Y, Petrenco P, Gulea A (2015) Antibacterial, antifungal and in vitro antileukaemia activity of metal complexes with thiosemicarbazones. J Cell Mol Med 19:865–878

    Article  CAS  Google Scholar 

  14. Beckford FA, Webb KR (2017) Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: antimicrobial and biophysical properties. Spectrochim Acta A 183:158–171

    Article  CAS  Google Scholar 

  15. Peycheva E, Alexandrova R, Miloshev G (2014) Application of the yeast comet assay in testing of food additives for genotoxicity. LWT Food Sci Technol 59:510–517

    Article  CAS  Google Scholar 

  16. Chandel A, Das KK, Bachhawat AK (2016) Glutathione depletion activates the yeast vacuolar transient receptor potential channel, Yvc1p, by reversible glutathionylation of specific cysteines. Mol Biol Cell 27:3913–3925

    Article  CAS  Google Scholar 

  17. Suwito H, Mustofa J, Pudjiastuti P, Fanani MZ, Kimata-Ariga Y, Katahira R, Kawakami T, Fujiwara T, Hase T, Sirat HM, Puspaningsih NNT (2014) Design and synthesis of chalcone derivatives as inhibitors of Plasmodium falciparum: pursuing new antimalarial agents. Molecules 19:21473–21488

    Article  Google Scholar 

  18. Reis CM, Sousa-Pereira D, Paiva RO, Kneipp LF, Echevarria A (2011) Microwave-assisted synthesis of new N 1-N 4-substituted thiosemicarbazones. Molecules 16:10668–10684

    Article  Google Scholar 

  19. Bruker (2007) APEX2 v2014.5-0. Bruker ASX Inc., Madison

    Google Scholar 

  20. Bruker (2013) SAINT v8.34A. Bruker ASX Inc., Madison

    Google Scholar 

  21. Sheldrick GM, SADABS (1996) Program for empirical absorption correction of area detector data. University of Göttingen, Göttingen

    Google Scholar 

  22. Sheldrick GM (2015) Crystal structure refinement with SHELXL. Acta Crystallogr Sect C Struct Chem 71:3–8

    Article  Google Scholar 

  23. Dolomanov OV, Bourhis LJ, Gildea RJ, Howard JAK, Puschmann H (2009) COLEX2: a complete structure solution, refinement and analysis program. J Appl Crystallogr 42:339–341

    Article  CAS  Google Scholar 

  24. Macrae CF, Bruno IJ, Chisholm JA, Edgington PR, McCabe P, Pidcock E, Rodriguez-Monge L, Taylor R, van de Streek J, Wood PA (2008) Mercury CSD 2.0: new features for the visualization and investigation of crystal structures. J Appl Crystallogr 41:466–470

    Article  CAS  Google Scholar 

  25. Sadowska-Bartosz I, Paczka A, Molon M, Bartosz G (2013) Dimethyl sulfoxide induces oxidative stress in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 13:820–830

    Article  CAS  Google Scholar 

  26. Castro FAV, Mariani D, Panek AD, Eleutherio ECA, Pereira MD (2008) Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS ONE 3:3999

    Article  Google Scholar 

  27. Oliveira RB, Souza-Fagundes EM, Soares RPP, Andrade AA, Krettli AU, Zani CL (2008) Synthesis and antimalarial activity of semicarbazone and thiosemicarbazone derivatives. Eur J Med Chem 43:1983–1988

    Article  Google Scholar 

  28. Ferraz KSO, Silva NF, Da Silva JG, Speziali NL, Mendes IC, Beraldo H (2012) Structural studies on acetophenone- and benzophenone-derived thiosemicarbazones and their zinc(II) complexes. J Mol Struct 1008:102–107

    Article  CAS  Google Scholar 

  29. García-Tojal J, García-Orad A, Serra JL, Pizarro JL, Lesama L, Arriortua MI, Rojo T (1999) Synthesis and spectroscopic properties of copper (II) complexes derived from thiophene-2-carbaldehyde thiosemicarbazone: structure and biological activity of [Cu(C6H6N3S2)2]. J Inorg Biochem 75:45–54

    Article  Google Scholar 

  30. Yang L, Powell DR, Houser RP (2007) Structural variation in copper(I) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ4. Dalton Trans 7:955–964

    Article  Google Scholar 

  31. Flores-Huerta AG, Tkatchenko A, Galván M (2016) Nature of hydrogen bonds and S–S interactions in the l-cystine crystal. J Phys Chem A 120:4223–4230

    Article  CAS  Google Scholar 

  32. El-Sharief MAMS, Abbas SY, El-Bayouki KAM, El-Gammal EW (2013) Synthesis of thiosemicarbazones derived from N-(4-hippuric acid) thiosemicarbazide and different carbonyl compounds as antimicrobial agents. Eur J Med Chem 67:263–268

    Article  CAS  Google Scholar 

  33. Pahontu E, Fala V, Gulea A, Poirier D, Tapcov V, Rosu T (2013) Synthesis and characterization of some new Cu(II), Ni(II) and Zn(II) complexes with salicylidene thiosemicarbazones: antibacterial, antifungal and in vitro antileukemia activity. Molecules 18:8812–8836

    Article  CAS  Google Scholar 

  34. de Oliveira JF, Lima TS, Vendramini-Costa DB, de Lacerda Pedrosa SCB, Lafayette EA, da Silva RMF, de Almeida SMV, de Moura RO, Ruiz ALTG, de Carvalho JE, de Lima MDCA (2017) Thiosemicarbazones and 4-thiazolidinones indole-based derivatives: synthesis, evaluation of antiproliferative activity, cell death mechanisms and topoisomerase inhibition assay. Eur J Med Chem 136:305–314

    Article  Google Scholar 

  35. Kalinowski DS, Stefani C, Toyokuni S, Ganz T, Anderson GJ, Subramaniam VN, Trinder D, Olynyk JK, Chu A, Jansson PJ, Sahni S, Lane DJR, Merlot AM, Kovacevic Z, Huang MLH, Lee CS, Richardson D (2016) Redox cycling metals: pedaling their roles in metabolism and their use in the development of novel therapeutics. Biochim Bhiophys Acta 1863:727–748

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agencies CAPES, CNPQ and FAPERJ (Grant: Sediadas E-26/010.002894/2014) for financial support, LDRX-UFF (www.ldrx.uff.br/) for the X-ray diffraction analysis and PPGQ-UFRRJ (http://cursos.ufrrj.br/posgraduacao/ppgq/) for the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda Porto Neves.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2151 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbosa, I.R., Pinheiro, I.d.S., dos Santos, A.D.L. et al. Synthesis of copper(II) and zinc(II) complexes with chalcone–thiosemicarbazone hybrid ligands: X-ray crystallography, spectroscopy and yeast activity. Transit Met Chem 43, 739–751 (2018). https://doi.org/10.1007/s11243-018-0262-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-018-0262-0

Navigation