Skip to main content
Log in

Synthesis and catalytic reactivity of mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

The reactions of five dinuclear carbonyl complexes [(η 5-C5Me4R)Mo(CO)3]2 [R = allyl, nBu, tBu, Ph, Bz] with I2 in chloroform solution gave the corresponding mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes [(η 5-C5Me4R)MoI(CO)3] [R = allyl (1), nBu (2), tBu (3), Ph (4), Bz (5)]. The molecular structures of complexes 2, 3 and 5 were determined by X-ray diffraction analysis. The results show that the substituent in the ring can directly affect the Mo–I bond distances; the more sterically hindered the substituent, the longer the Mo–I bond. Friedel–Crafts reactions of aromatic compounds with a variety of alkylation reagents catalyzed by the complexes showed that all of these mononuclear molybdenum carbonyl complexes have catalytic activity in Friedel–Crafts alkylation reactions. Indeed, compared with traditional catalysts, these mononuclear metal carbonyl complexes have obvious advantages such as higher activities, mild reaction conditions, high selectivity, simple post-processing, and environmentally friendly chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Scheme 6
Scheme 7

Similar content being viewed by others

References

  1. Friedel C, Crafts JM, Hebd CR (1877) Seances Acad Sci 84:1450

    Google Scholar 

  2. Olah GA (1963) Friedel-crafts and related reactions. Wiley-Interscience, New York

    Google Scholar 

  3. Olah GA (1973) Friedel-crafts chemistry. Wiley, New York

    Google Scholar 

  4. Viswanathan B, Jacob B (2005) Catal Rev 47:1

    Article  CAS  Google Scholar 

  5. Khan MS, Al-Mandhary MRA, Al-Suti MK, Ahrens B, Mahon MF, Male L, Raithby PR, Boothby CE, Kohler A (2003) Dalton Trans 1:74

    Article  Google Scholar 

  6. Leadbeater NE, Marco M (2002) Chem Rev 102:3217

    Article  CAS  Google Scholar 

  7. Beak P, Snieckus V (1982) Acc Chem Res 15:306

    Article  CAS  Google Scholar 

  8. Snieckus V (1990) Chem Rev 90:879

    Article  CAS  Google Scholar 

  9. Epsztajin J, Józwiak A, Szczesniak AK (2006) Curr Org Chem 10:1817

    Article  Google Scholar 

  10. Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N (1993) Nature 366:529

    Article  CAS  Google Scholar 

  11. Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N, Murai S (1995) Bull Chem Soc Jpn 68:62

    Article  CAS  Google Scholar 

  12. Kakiuchi F, Murai S (2002) Acc Chem Res 35:826

    Article  CAS  Google Scholar 

  13. Ritleng V, Sirlin C, Pfeffer M (2002) Chem Rev 102:1731

    Article  CAS  Google Scholar 

  14. Kakiuchi F, Chatani N (2003) Adv Synth Catal 345:1077

    Article  CAS  Google Scholar 

  15. Matsumoto T, Taube DJ, Perianna RA, Taube H, Yoshida H (2000) J Am Chem Soc 122:7414

    Article  CAS  Google Scholar 

  16. Karshtedt D, McBee JL, Bell AT, Tilley TD (2006) Organometallics 25:1801

    Article  CAS  Google Scholar 

  17. Yamamoto Y, Itonaga K (2008) Chem Eur J 14:10705

    Article  CAS  Google Scholar 

  18. Lin J, Gao P, Li B, Xu SS, Song HB, Wang BQ (2006) Inorg Chim Acta 359:4503

    Article  CAS  Google Scholar 

  19. Ma ZH, Zhao MX, Li F, Liu XH, Lin J (2009) Chin J Inorg Chem 25:1699

    Google Scholar 

  20. Ma ZH, Zhao MX, Lin LZ, Han ZG, Lin J (2010) Chin J Inorg Chem 26:1908

    CAS  Google Scholar 

  21. Ma ZH, Wang N, Guo KM, Zheng XZ, Lin J (2013) Inorg Chim Acta 399:126

    Article  CAS  Google Scholar 

  22. Bensley DM (1988) J Org Chem 53:4417

    Article  CAS  Google Scholar 

  23. Enders M, Ludwig G, Pritzkow H (2001) Organometallics 20:827

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 21372061), the Hebei Natural Science Foundation of China (Nos. B2013205025 and B2014205018), and the Key Research Fund of Hebei Normal University (No. L2012Z02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 579 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, ZH., Lv, LQ., Wang, H. et al. Synthesis and catalytic reactivity of mononuclear substituted tetramethylcyclopentadienyl molybdenum carbonyl complexes. Transition Met Chem 41, 225–233 (2016). https://doi.org/10.1007/s11243-015-0014-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-015-0014-3

Keywords

Navigation