Skip to main content
Log in

DNA-binding, antioxidant activity and in vitro cytotoxicity induced by ruthenium(II) complexes containing polypyridyl ligands

  • Published:
Transition Metal Chemistry Aims and scope Submit manuscript

Abstract

Two new ruthenium(II) polypyridyl complexes, [Ru(dmp)2(maip)](ClO4)2 1 (maip = 2-(3-aminophenyl)imizado[4,5-f][1,10]phenanthroline and [Ru(dmp)2(paip)](ClO4)2 2 (paip = 2-(4-aminophenyl)imidazo[4,5-f][1,10]phenanthroline, dmp = 2, 9-dimethyl-1,10-phenanthroline) have been synthesized and characterized. The DNA-binding behaviors of complexes 1 and 2 were studied by viscosity measurements, thermal denaturation, and absorption titration. The results show that the two complexes intercalate between the base pairs of DNA. The DNA-binding constants K b for complexes 1 and 2 were determined to be 3.23 ± 0.16 × 104 M−1 (s = 0.97) and 4.34 ± 0.65 × 104 M−1 (s = 1.13). The cytotoxicity of these complexes has been evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The IC50 values are 35.70, 41.04, 55.25 and 37.50 for complex 1 and 37.02, 103.08, 130.07 and 37.80 for complex 2 against BEL-7402, C-6, HepG-2 and MCF-7 cell lines, respectively. The antioxidant activity against hydroxyl radical (OH•) was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sigel A, Sigel H (1996) (eds) In: Metal ions in biological systems, vol 33. Marcel Dekker, New York, p 177

  2. Erkkila KE, Odom DT, Barton JK (1999) Chem Rev 99:2777

    Article  CAS  Google Scholar 

  3. Ji LN, Zou XH, Liu JG (2001) Coord Chem Rev 216–217:513

    Article  Google Scholar 

  4. Vaidyanathan VG, Nair BU (2005) Dalton Trans 2842–2848

  5. Pelligrint PP, Aldrich-Wright (2003) Dalton Trans 176–183

  6. Maheswari PU, Palaniandavar M (2004) Inorg Chim Acta 357:901

    Article  CAS  Google Scholar 

  7. Arockiasamy DL, Radhika S, Parthasarathi R, Nair BU (2009) Eur J Med Chem 44:2044

    Article  Google Scholar 

  8. Tan LF, Liang XL, Liu XH (2009) J Inorg Biochem 103:441

    Article  CAS  Google Scholar 

  9. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) J Am Chem Soc 112:4960

    Article  CAS  Google Scholar 

  10. Yu M, Zu SZ, Chen Y, Liu YP, Han BH, Liu Y (2010) Chem Eur J 16:1168

    Article  CAS  Google Scholar 

  11. Fiore GL, Edwards JM, Payne SJ, Klinkenberg JL, Gioeli DG, Demas JN, Fraser CL (2007) Biomacromolecules 8:2829

    Article  CAS  Google Scholar 

  12. Allardyce CS, Dyson PJ, Ellis DJ, Heath SL (2001) Chem Commun 1396–1397

  13. Morris RE, Aird RE, Murdoch PDSH, Cheng JC, Hughes ND, Parsons S, Perkin A, Boyd G, Jodrell DI, Salder PJ (2001) J Med Chem 44:3616

    Article  CAS  Google Scholar 

  14. Gossens C, Tavernelli I, Rothlisberger U (2008) J Am Chem Soc 130:10921

    Article  CAS  Google Scholar 

  15. Schatzschneider U, Niesel J, Ott I, Gust R, Alborzinia H, Wölfl S (2008) ChemMedChem 3:1104

    Article  CAS  Google Scholar 

  16. Liu YJ, Zeng CH, Huang HL, He LX, Wu FH (2010) Eur J Med Chem 45:567

    CAS  Google Scholar 

  17. Paw W, Eisenberg R (1997) Inorg Chem 36:2287

    Article  CAS  Google Scholar 

  18. Marmur J (1961) J Mol Biol 3:208

    Article  CAS  Google Scholar 

  19. Reichmann ME, Rice SA, Thomas CA, Doty P (1954) J Am Chem Soc 76:3047

    Article  CAS  Google Scholar 

  20. Collin JP, Sauvage TP (1986) Inorg Chem 25:135

    Article  CAS  Google Scholar 

  21. Carter MT, Rodriguez M, Bard A (1989) J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  22. Chaires JB, Dattagupta N, Crothers DM (1982) Biochemistry 21:3933

    Article  CAS  Google Scholar 

  23. Satyanaryana S, Dabrowial JC, Chaires JB (1992) Biochemistry 31:9319

    Article  Google Scholar 

  24. Satyanaryana S, Dabrowial JC, Chaires JB (1993) Biochemistry 32:2573

    Article  Google Scholar 

  25. Cohen G, Eisenberg H (1969) Biopolymers 8:45

    Article  CAS  Google Scholar 

  26. Mosmann T (1983) J Immunol Methods 65:55

    Article  CAS  Google Scholar 

  27. Li TR, Yang ZY, Wang BD, Qin DD (2008) Eur J Med Chem 43:1688

    Article  Google Scholar 

  28. Tan LF, Shen JL, Chen XJ, Liang XL (2009) DNA Cell Biol 28:461

    Article  CAS  Google Scholar 

  29. Liu HQ, Tzeng BC, You YS, Peng SM, Chen HL, Yang MS, Che CM (2002) Inorg Chem 41:3161

    Article  Google Scholar 

  30. Waring MJ (1965) J Mol Biol 13:269

    Article  CAS  Google Scholar 

  31. Liu YJ, Zeng CH, Wu FH, Yao JH, He LX, Huang HL (2009) J Mol Struct 932:105

    Article  CAS  Google Scholar 

  32. Chen LM, Liu J, Chen JC, Shi S, Tan CP, Zheng KC, Ji LN (2008) J Mol Struct 881:156

    Article  CAS  Google Scholar 

  33. Tsai K, Hsu TG, Hsu KM, Cheng H, Liu TY, Hsu CF, Kong CW (2001) Redical free Biol Med 31:1465

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (30800227), the Science and Technology Foundation of Guangdong Province (2009B030803057) and Guangdong Pharmaceutical University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-Hai Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zeng, CH., Liu, YJ., Li, ZZ. et al. DNA-binding, antioxidant activity and in vitro cytotoxicity induced by ruthenium(II) complexes containing polypyridyl ligands. Transition Met Chem 35, 731–736 (2010). https://doi.org/10.1007/s11243-010-9386-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11243-010-9386-6

Keywords

Navigation