Skip to main content
Log in

Imbibition into Highly Porous Layers of Aggregated Particles

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

The imbibition process into the pore structure of highly porous nanoparticle layers is investigated. The layers are fabricated with the Flame-Spray-Pyrolysis process and consist of aggregated \(\hbox {TiO}_{2}\) nanoparticles. Measurements of the pore structure reveal that these layers have a very high porosity and a broad pore size distribution. Imbibition experiments show a deviation of the imbibition process from the classical capillary rising theory (Bell, Cameron, Lucas and Washburn). Therefore, a new capillary rising model is developed that accounts for the complex pore structure within layers of aggregated particles through the implementation of the fractal dimension of tortuosity. Comparison of the new model and the performed imbibition experiments enable the determination of the equivalent pore diameter for the imbibition process. The resulting pore diameter agrees well with the mean pore diameter of the nitrogen physisorption measurements. Hence, the new model enables the prediction of the imbibition process into highly porous layers of aggregated particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a :

Factor of the power law fitting (\(\hbox {m}^{1+{b}}\,\hbox {s}^{-1}\))

A :

Cross-sectional area of the porous medium (\(\hbox {m}^{2}\))

\({A}_\mathrm{p}\) :

Cross-sectional area of a pore (\(\hbox {m}^{2}\))

b :

Exponent of the power law fitting (–)

BET:

Brunauer–Emmett–Teller

BJH:

Barret–Joyner–Halenda

BCLW:

Bell, Cameron, Lucas and Washburn

Bo :

Bond number (–)

\({c}_{\mathrm{KC}}\) :

Kozeny–Carman constant (–)

\({c}_{\mathrm{Ar}}\) :

Archie constant (–)

\({c}_{0}\) :

Factor of the capillary rising model (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\({d}_\mathrm{p}\) :

Pore diameter (m)

\(\Delta {d}_\mathrm{p}\) :

Pore diameter interval (m)

\({d}_{\mathrm{p,eq}}\) :

Equivalent pore diameter for the imbibition process (m)

\({\bar{d}}_{\mathrm{p,2}}\) :

Weighted mean pore diameter of the \({q}_{2}\) (\({d}_\mathrm{p}\)) distribution (m)

\({d}_{\mathrm{32,pa}}\) :

Sauter mean diameter of the primary particles (m)

\({D}_\mathrm{t}\) :

Fractal dimension of tortuosity (–)

FSP:

Flame-Spray-Pyrolysis

g :

Gravitational constant (\(\hbox {m}^{2}\,\hbox {s}^{-1}\))

\({L}_{0}\) :

Straight-line flow length (m)

\({L}_\mathrm{p}\) :

Flow length inside the pore (m)

\({F}_{\mathrm{fr}}\) :

Friction force (N)

\({F}_{\mathrm{cap}}\) :

Capillary force (N)

\({F}_{\mathrm{gra}}\) :

Gravitational force (N)

m :

Time exponent (–)

\({N}_\mathrm{p}\) :

Number of pores (–)

p :

Pressure (Pa)

\({p}_{\mathrm{cap}}\) :

Capillary pressure (Pa)

\({p}_{\mathrm{gra}}\) :

Gravitational pressure (Pa)

\({p}_{\mathrm{lam}}\) :

Lamination pressure (Pa)

\({q}_{0}(d_\mathrm{p})\) :

Differential pore number distribution (\(\hbox {m}^{-1}\))

\({q}_{2}(d_\mathrm{p})\) :

Differential pore area distribution (\(\hbox {m}^{-1}\))

s :

Standard deviation (a.u.)

\({S}_\mathrm{p}\) :

Surface area of the pore (\(\hbox {m}^{2}\))

\({S}_{\mathrm{pa}}\) :

Surface area of the particles (\(\hbox {m}^{2}\))

SEM:

Scanning-electron-microscope

\(\hbox {SSA}_{\mathrm{fil}}\) :

Specific surface area of the filter paper (\(\hbox {m}^{2}\,\hbox {g}^{-1}\))

\(\hbox {SSA}_{\mathrm{sam}}\) :

Specific surface area of the sample (\(\hbox {m}^{2}\,\hbox {g}^{-1}\))

\(\hbox {SSA}_{\mathrm{pa}}\) :

Specific surface area of the nanoparticles (\(\hbox {m}^{2}\,\hbox {g}^{-1}\))

\({t}_{n}\) :

Time step n (s)

\({v}_{0}\) :

Straight-line imbibition velocity (\(\hbox {m}\,\hbox {s}^{-1}\))

\(v_\mathrm{p}\) :

Specific pore volume (\(\hbox {m}^{3}\,\hbox {g}^{-1}\))

\(\Delta v_\mathrm{p}\) :

Differential specific pore volume (\(\hbox {m}^{3}\,\hbox {g}^{-1}\))

\({V}_\mathrm{p}\) :

Pore volume (\(\hbox {m}^{3}\))

\({V}_{\mathrm{pa}}\) :

Particle volume (\(\hbox {m}^{3}\))

\({\dot{V}}\) :

Volume flow rate (\(\hbox {m}^{3}\,\hbox {s}^{-1}\))

\(\dot{V}_{i}\) :

Volume flow rate in a pore (\(\hbox {m}^{3}\,\hbox {s}^{-1}\))

\({w}_{\mathrm{fil}}\) :

Mass fraction of the filter paper (–)

XRD:

X-ray diffraction

\(\alpha \) :

Statistical significance level (–)

\(\beta \) :

Geometry correction factor for the pore diameter (–)

\(\varepsilon \) :

Longest non-tortuous flow length (m)

\(\eta _\mathrm{l}\) :

Viscosity of the liquid (Pa s)

\(\theta _{\mathrm{adv}}\) :

Advancing contact angle (\({^{\circ }}\))

\(\kappa \) :

Electrical conductivity (\(\hbox {S}\,\hbox {m}^{-1}\))

\(\rho _\mathrm{l}\) :

Density of the liquid (\(\hbox {kg}\,\hbox {m}^{-3}\))

\(\sigma _\mathrm{l}\) :

Surface tension of the liquid (\(\hbox {N}\,\hbox {m}^{-1}\))

\(\tau \) :

Tortuosity (–)

\(\phi \) :

Porosity (–)

\(\psi \) :

Orientation angle to a horizontal plane (\({^{\circ }}\))

References

  • Alava, M., Dubé, M., Rost, M.: Imbibition in disordered media. Adv. Phys. 53(2), 83–175 (2004)

    Article  Google Scholar 

  • Archie, G.E.: The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Min. Metall. Pet. Eng. 146, 54–61 (1942)

    Google Scholar 

  • Barrett, E.P., Joyner, L.G., Halenda, P.P.: The determination of pore volume and area distributions in porous substances. 1. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73(1), 373–380 (1951)

    Article  Google Scholar 

  • Bell, J.M., Cameron, F.K.: The flow of liquids through capillary spaces. J. Phys. Chem. 10(8), 658–674 (1905)

    Article  Google Scholar 

  • Bortz, J., Schuster, C.: Statistik für Human- und Sozialwissenschaftler, 7th edn. Springer, Berlin (2010)

    Book  Google Scholar 

  • Brunauer, S., Emmett, P.H., Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938)

    Article  Google Scholar 

  • Butt, H.-J., Kappl, M.: Surface and Interfacial Forces. Wiley-VCH, Weinheim (2010)

    Book  Google Scholar 

  • Cai, J.C., Yu, B.M.: A discussion of the effect of tortuosity on the capillary imbibition in porous media. Transp. Porous Media 89(2), 251–263 (2011)

    Article  Google Scholar 

  • Cai, J.C., Yu, B.M., Zou, M.Q., Luo, L.: Fractal characterization of spontaneous co-current imbibition in porous media. Energy Fuels 24, 1860–1867 (2010)

    Article  Google Scholar 

  • Cai, J.C., Hu, X.Y., Standnes, D.C., You, L.J.: An analytical model for spontaneous imbibition in fractal porous media including gravity. Colloids Surf. A 414, 228–233 (2012)

    Article  Google Scholar 

  • Cai, J.C., Perfect, E., Cheng, C.L., Hu, X.Y.: Generalized modeling of spontaneous imbibition based on Hagen–Poiseuille flow in tortuous capillaries with variably shaped apertures. Langmuir 30(18), 5142–5151 (2014)

    Article  Google Scholar 

  • Carman, P.C.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150–166 (1937)

    Google Scholar 

  • Chibowski, E.: Solid surface free energy components determination by the thin-layer wicking technique. J. Adhes. Sci. Technol. 6(9), 1069–1090 (1992)

    Article  Google Scholar 

  • Chibowski, E., González-Caballero, F.: Theory and practice of thin-layer wicking. Langmuir 9(1), 330–340 (1993)

    Article  Google Scholar 

  • Cui, Z.G., Binks, B.P., Clint, J.H.: Determination of contact angles on microporous particles using the thin-layer wicking technique. Langmuir 21(18), 8319–8325 (2005)

    Article  Google Scholar 

  • de Boer, J.H., Lippens, B.C., Linsen, B.G., Broekhoff, J.C.P., van den Heuvel, A., Osinga, T.J.: The t-curve of multimolecular \(N_{2}\)-adsorption. J. Colloid Interface Sci. 21(4), 405–414 (1966)

    Article  Google Scholar 

  • Denesuk, M., Smith, G.L., Zelinski, B.J.J., Kreidl, N.J., Uhlmann, D.R.: Capillary penetration of liquid droplets into porous materials. J. Colloid Interface Sci. 158(1), 114–120 (1993)

    Article  Google Scholar 

  • Ergun, S.: Fluid flow through packed columns. Chem. Eng. Prog. 48(2), 89–94 (1952)

    Google Scholar 

  • Fisher, R.A.: On a distribution yielding the error functions of several well known statistics. In: Proceedings of the International Congress of Mathematics, Toronto, pp. 805–813 (1924)

  • Fisher, R.A.: Statistical Methods for Research Workers, vol. 5. Oliver and Boyd, Edinburgh (1934)

    Google Scholar 

  • Gelhar, L.W., Mantoglou, A., Welty, C., Rehfeld, K.R.: A Review of Field-scale Physical Solute Transport Processes in Saturated and Unsaturated Porous Media. Electrical Power Research Institute, Palo Alto (1985)

    Google Scholar 

  • Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, San Diego (2011)

    Google Scholar 

  • Khattab, I.S., Bandarkar, F., Fakhree, M.A.A., Jouyban, A.: Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323 K. Korean J. Chem. Eng. 29(6), 812–817 (2012)

    Article  Google Scholar 

  • Kozeny, J.: Über kapillare Leitung des Wassers im Boden (Aufstieg, Versickerung u. Anwendung auf die Bewässerg). Sitzungsber. Akad. Wiss. Mat. Nat. Kl. Abt. 2a 136 (2a)(5–6), 271–306 (1927)

    Google Scholar 

  • Lago, M., Araujo, M.: Capillary rise in porous media. J. Colloid Interface Sci. 234(1), 35–43 (2001)

    Article  Google Scholar 

  • Lemmon, E.W., McLinden, M.O., Friend, D.G.: Thermophysical properties of fluid systems. In: Linstrom, J., Mallard, W.G. (eds.) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg (retrieved Apr 2016)

  • Li, K.W., Horne, R.N.: Characterization of spontaneous water imbibition into gas-saturated rocks. SPE J. 6(4), 375–384 (2001)

    Article  Google Scholar 

  • Li, K.W., Zhao, H.Y.: Fractal prediction model of spontaneous imbibition rate. Transp. Porous Media 91(2), 363–376 (2012)

    Article  Google Scholar 

  • Lucas, R.: Über das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten. Kolloid-Zeitschrift 23(1), 15–22 (1918)

    Article  Google Scholar 

  • Mädler, L., Kammler, H.K., Mueller, R., Pratsinis, S.E.: Controlled synthesis of nanostructured particles by flame spray pyrolysis. J. Aerosol Sci. 33(2), 369–389 (2002)

    Article  Google Scholar 

  • Mädler, L., Roessler, A., Pratsinis, S.E., Sahm, T., Gurlo, A., Barsan, N., Weimar, U.: Direct formation of highly porous gas sensing films by in situ thermophoretic deposition of flame made \(Pt/SnO_{2}\) nanoparticles. Sens. Actuators B 114(1), 283–295 (2006)

    Article  Google Scholar 

  • Matyka, M., Khalili, A., Koza, Z.: Tortuosity–porosity relation in porous media flow. Phys. Rev. E 78(2), 026306 (2008)

    Article  Google Scholar 

  • McCabe, W.L., Smith, J.C., Harriott, P.: Unit Operations of Chemical Engineering, 7th edn. McGraw-Hill Chemical Engineering Series, New York (2005)

    Google Scholar 

  • Morrow, N.R., Mason, G.: Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 6(4), 321–337 (2001)

    Article  Google Scholar 

  • Mueller, R., Kammler, H.K., Wegner, K., Pratsinis, S.E.: OH surface density of SiO\(_2\) and TiO\(_2\) by thermogravimetric analysis. Langmuir 19(1), 160–165 (2003)

    Article  Google Scholar 

  • Nowak, E., Combes, G., Stitt, E.H., Pacek, A.W.: A comparison of contact angle measurement techniques applied to highly porous catalyst supports. Powder Technol. 233, 52–64 (2013)

    Article  Google Scholar 

  • Schopf, S.O., Salameh, S., Mädler, L.: Transfer of highly porous nanoparticle layers to various substrates through mechanical compression. Nanoscale 5(9), 3764–3772 (2013)

    Article  Google Scholar 

  • Student: The probable error of a mean. Biometrika 6, 1–25 (1908)

  • Teoh, W.Y., Amal, R., Mädler, L.: Flame spray pyrolysis: an enabling technology for nanoparticles design and fabrication. Nanoscale 2(8), 1324–1347 (2010)

    Article  Google Scholar 

  • Tuller, M., Or, D., Dudley, L.M.: Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35(7), 1949–1964 (1999)

    Article  Google Scholar 

  • van Honschoten, J.W., Brunets, N., Tas, N.R.: Capillarity at the nanoscale. Chem. Soc. Rev. 39(3), 1096–1114 (2010)

    Article  Google Scholar 

  • Van Oss, C.J., Giese, R.F., Li, Z., Murphy, K., Norris, J., Chaudhury, M.K., Good, R.J.: Determination of contact angles and pore sizes of porous media by column and thin layer wicking. J. Adhes. Sci. Technol. 6(4), 413–428 (1992)

    Article  Google Scholar 

  • Wang, R., Hashimoto, K., Fujishima, A., Chikuni, M., Kojima, E., Kitamura, A., Shimohigoshi, M., Watanabe, T.: Light-induced amphiphilic surfaces. Nature 388(6641), 431–432 (1997)

    Article  Google Scholar 

  • Wang, R., Sakai, N., Fujishima, A., Watanabe, T., Hashimoto, K.: Studies of surface wettability conversion on TiO\(_{2}\) single-crystal surfaces. J. Phys. Chem. B 103(12), 2188–2194 (1999)

    Article  Google Scholar 

  • Washburn, E.W.: The dynamics of capillary flow. Phys. Rev. 17(3), 273–283 (1921)

    Article  Google Scholar 

  • Wheatcraft, S.W., Tyler, S.W.: An explanation of scale-dependent dispersivity in heterogeneous aquifers using concepts of fractal geometry. Water Resour. Res. 24(4), 566–578 (1988)

    Article  Google Scholar 

  • Yu, B.M., Cheng, P.: A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 45(14), 2983–2993 (2002)

    Article  Google Scholar 

  • Yu, B.M., Li, H.M.: A geometry model for tortuosity of flow path in porous media. Chin. Phys. Lett. 21(8), 1569–1571 (2004)

    Article  Google Scholar 

  • Zhang, H., Popp, M., Hartwig, A., Mädler, L.: Synthesis of polymer/inorganic nanocomposite films using highly porous inorganic scaffolds. Nanoscale 4(7), 2326–2332 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft (DFG) for founding this work through the project “Experimental and computational analysis of the forces acting on highly porous nanoparticle scaffolds/layers during liquid imbibition” (MA3333/10-1, HA2420/16-1). We also thank the group of Prof. M. Dreyer from the Center of Applied Space Technology and Microgravity (ZARM) at the University of Bremen, especially P. Prengel, for the surface tension measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Mädler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 101 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schopf, S.O., Hartwig, A., Fritsching, U. et al. Imbibition into Highly Porous Layers of Aggregated Particles. Transp Porous Med 119, 119–141 (2017). https://doi.org/10.1007/s11242-017-0876-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-017-0876-2

Keywords

Navigation