Skip to main content
Log in

Impact of Water Film Evaporation on Gas Transport Property in Fractured Wet Coal Seams

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Production data of coalbed methane have shown that coalbed may be wet for a long time after the completion of water flow and water–gas two-phase flow stages. In this period, water flows out in moisture vapor, but the water in matrix does not change so much. The moisture loss is mainly from the water film in fracture network. Experiments also observed that such a moisture loss has a profound impact on the storage and transport of coalbed methane. However, this impact has not been investigated so far. This study investigates this impact through following works: firstly, a new conceptual permeability model is proposed based on water film adhered to the surface of fractures in a dual-porosity porous medium. The effect of water film is further described in gas flow equation by a non-Darcy law with threshold pressure gradient. Thirdly, a coupled multi-physical model is established to consider the interactions among coal deformation, gas flow, gas sorption and moisture loss. This model is validated by the gas production data of a coal seam in the Fruitland formation of San Juan basin. Finally, four scenarios are computed to comprehensively study the impact of moisture loss. These simulations show that the proposed model can well fit the history of gas production data. Non-Darcy flow has different velocity profile from Darcy flow. For the non-Darcy flow, the gas flow velocity increases quickly, then slowly, and finally decreases once gas starts to flow at a point. Moisture evaporation with gas flow mainly occurs in the zone near wellbore. This loss has a delay to the gas flow velocity. It also reveals that this moisture loss in coal seams can significantly improve coal permeability and thus enhance gas production. Therefore, the change of water film has significant impacts on gas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Brakel, J.V.: Mass transfer in convective drying. Adv. Dry. 1, 217–267 (1980)

    Google Scholar 

  • Busch, A., Gensterblum, Y.: CBM and CO\(_{2}\)-ECBM related sorption processes in coal: a review. Int. J. Coal Geol. 87, 49–71 (2011)

    Article  Google Scholar 

  • Cai, J.C.: A fractal approach to low velocity non-Darcy flow in a low permeability porous medium. Chin. Phys. B 23(4), 044701 (2014)

    Article  Google Scholar 

  • Carrier, B., Wang, L., Vandamme, M., Pellenq, R.J.M., Bornert, M., Tanguy, A., Damme, H.V.: ESEM study of the humidity-induced swelling of clay film. Langmuir 29, 12823–12833 (2013)

    Article  Google Scholar 

  • Chen, D., Pan, Z.J., Liu, J., Connell, L.D.: Modeling and simulation of moisture effect on gas storage and transport in coal seams. Energy Fuels 26, 1695–1706 (2012)

    Article  Google Scholar 

  • Chen, D., Pan, Z., Liu, J., Connell, L.D.: An improved relative permeability model for coal reservoirs. Int. J. Coal Geol. 109, 45–57 (2013)

    Article  Google Scholar 

  • Clarkson, C.R., Rahmanian, M., Kantzas, A., Morad, K.: Relative permeability of CBM reservoirs: controls on curve shape. Int. J. Coal Geol. 88(4), 204–217 (2011)

    Article  Google Scholar 

  • Coppens, L.: L’adsorption du méthane par les houilles sous pression élevée. Annales des Mines de Belgique 37, 173 (1936)

    Google Scholar 

  • Crosdale, P.J., Moore, T.A., Mares, T.E.: Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir. Int. J. Coal Geol. 76, 166–174 (2008)

    Article  Google Scholar 

  • Day, S., Sakurovs, R., Weir, S.: Supercritical gas sorption on moist coals. Int. J. Coal Geol. 74, 203–214 (2008)

    Article  Google Scholar 

  • Derjaguin, B.V., Churayev, N.: Investigation of the properties of water II. J. Colloid Interface Sci. 36(4), 415–426 (1971)

    Article  Google Scholar 

  • Derjaguin, B.V., Zorin, Z.M., Rabinovich, Y.I., Churaev, N.V.: Results of analytical investigation of the composition of “anomalous” water. J. Colloid Interface Sci. 46(3), 437–441 (1974)

    Article  Google Scholar 

  • Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity. In: Fairhurst, C. (ed.) Comprehensive Rock Engineering, pp. 113–171 (1993)

  • Ettinger, I.L., Lidin, G.D., Dmitriev, A.M., Shaupachina, E.S: Systematic Handbook for the Determination of the Methane Content of Coal Seams from the Seam Pressure of the Gas and the Methane Capacity of the Coal; U.S. Bureau of Mines Translation No. 1505/National Board Translation No. A.1606/SHE: Moscow (1958)

  • Gensterblum, Y., Busch, A., Krooss, B.M.: Molecular concept and experimental evidence of competitive adsorption of H\(_{2}\)O, CO\(_{2}\) and CH\(_{4}\) on organic material. Fuel 115, 581–588 (2014)

    Article  Google Scholar 

  • Gensterblum, Y., Merkel, A., Busch, A., Krooss, B.M.: High-pressure CH4 and CO2 sorption isotherms as a function of coal maturity and the influence of moisture. Int. J. Coal Geol. 118, 45–57 (2013)

    Article  Google Scholar 

  • Horn, R., Smith, D., Haller, W.: Surface forces and viscosity of water measured between silica sheets. Chem. Phys. Lett. 62(4–5), 404–408 (1989)

    Article  Google Scholar 

  • Ibrahim, A.F., Nasr-El-Din, H.A.: A comprehensive model to history match and predict gas/water production from coal seams. Int. J. Coal Geol. 146, 79–90 (2015)

    Article  Google Scholar 

  • Jahangir, M.H., Sadrnejad, S.A.: A new coupled heat, moisture and air transfer model in unsaturated soil. J. Mech. Sci. Technol. 26(11), 3661–3672 (2012)

    Article  Google Scholar 

  • Joubert, J.I., Grein, C.T., Bienstock, D.: Effect of moisture on the methane capacity of American coals. Fuel 53, 186–191 (1974)

    Article  Google Scholar 

  • Laxminarayana, C., Crosdale, P.J.: Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. Int. J. Coal Geol. 40, 309–325 (1999)

    Article  Google Scholar 

  • Lehmann, P., Assouline, S., Or, D.: Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 77(5), 056309 (2008)

    Article  Google Scholar 

  • Levy, J.H., Day, S.J., Killingley, J.S.: Methane capacities of Bowen Basin coals related to coal properties. Fuel 76, 813–881 (1997)

    Article  Google Scholar 

  • Liu, J., Elsworth, D., Brady, B.H.: Linking stress-dependent effective porosity and hydraulic conductivity fields to RMR. Int. J. Rock Mech. Min. Sci. 36(5), 581–596 (1999)

    Article  Google Scholar 

  • Martin, C.H.: Australian Coal Mining Practice. Monographys, No. 12. Australasian Institute of Mining and Metallurgy: Parkville, Vic, 342 (1986)

  • Mastalerz, M., Solano-Acosta, W., Schimmelmann, A., Drobniak, A.: Effects of coal storage in air on physical and chemical properties of coal and on gas adsorption. Int. J. Coal Geol. 79, 167–174 (2009)

    Article  Google Scholar 

  • Nakagawa, T., Komaki, I., Sakawa, M., Nishikawa, K.: Small angle X-ray scattering study on change of fractal property of Witbank coal with heat treatment. Fuel 79(11), 1341–1346 (2000)

    Article  Google Scholar 

  • Nimmo, J.R.: Theory for source-responsive and free-surface film modeling of unsaturated flow. Vadose Zone J. 9, 295–306 (2010)

    Article  Google Scholar 

  • Nishiyama, N., Yokoyama, T.: Estimation of water film thickness in geological media associated with the occurrence of gas entrapment. Procedia Earth Planet. Sci. 7, 620–623 (2013a)

    Article  Google Scholar 

  • Nishiyama, N., Yokoyama, T.: Does the reactive surface area of sandstone depend on water saturation? The role of reactive-transport in water film. Geochim. Cosmochim. Acta 122, 153–169 (2013b)

    Article  Google Scholar 

  • Nishiyama, N., Yokoyama, T., Takeuchi, S.: Size distributions of pore water and entrapped air during drying-infiltration processes of sandstone characterized by water-expulsion porosimetry. Water Resour. Res. 48(9), W09556 (2012)

    Article  Google Scholar 

  • Ozdemir, E., Schroeder, K.: Effect of moisture on adsorption isotherms and adsorption capacities of CO\(_{2}\) on coals. Energy Fuels 23, 2821–2831 (2009)

    Article  Google Scholar 

  • Packham, R., Cinar, Y., Moreby, R.: Simulation of an enhanced gas recovery field trial for coal mine gas management. Int. J. Coal Geol. 85, 247–256 (2011)

    Article  Google Scholar 

  • Pan, Z., Connell, L.D., Camilleri, M., Connelly, L.: Effects of matrix moisture on gas diffusion and flow in coal. Fuel 89, 3207–3217 (2010)

    Article  Google Scholar 

  • Pan, Z.: Modeling of coal swelling induced by water vapor adsorption. Front. Chem. Sci. Eng. 6(1), 94–103 (2012)

    Article  Google Scholar 

  • Philip, J.R.: Evaporation, and moisture and heat fields in the soil. J. Meteorol. 14(4), 354–366 (1957)

    Article  Google Scholar 

  • Philip, J.R., Vries, D.A.D.: Moisture movement in porous materials under temperature gradients. EOS Trans. Am. Geophys. Union 38, 222–232 (1957)

    Article  Google Scholar 

  • Plug, W.J., Mazumder, S., Bruining, J., Siemons, N., Wolf, K,H.: Capillary pressure and wettability behavior of the coal-water–carbon dioxide system at high pressures. Paper presented at 2006 international CBM symposium, Tuscaloosa, Al; 22–26 (2006)

  • Schmatz, J., Urai, J.L., Berg, S., Ott, H.: Nanoscale imaging of pore-scale fluid-fluid-solid contacts in sandstone. Geophys. Res. Lett. 42(7), 2189–2195 (2015). doi:10.1002/2015GL063354

    Article  Google Scholar 

  • Shokri, N., Lehmann, P., Or, D.: Effects of hydrophobic layers on evaporation from porous media. Geophys. Res. Lett. 35(19), L19407, 1–4 (2008). doi:10.1029/2008GL035230

  • Su, S., Chen, H.W., Teakle, P., Xue, S.: Characteristics of coal mine ventilation air flows. J. Environ. Manag. 86(1), 44–62 (2008)

    Article  Google Scholar 

  • Swartzendruber, D.: Non-Darcy flow behavior in liquid-saturated porous media. J. Geophys. Res 67(13), 5205–5213 (1962)

    Article  Google Scholar 

  • Tokunaga, T.K.: DLVO-based estimates of adsorbed water film thicknesses in geologic CO\(_{2}\) reservoirs. Langmuir 28, 8001–8009 (2012)

    Article  Google Scholar 

  • Tokunaga, T.K.: Physicochemical controls on adsorbed water film thickness in unsaturated geological media. Water Resour. Res. 47, W08514 (2011)

    Article  Google Scholar 

  • Wang, J.G., Kabir, A., Liu, J.S., Chen, Z.W.: Effect of non-Darcy flow on the performance of coal seam gas wells. Int. J. Coal Geol. 93(1), 62–74 (2012)

    Article  Google Scholar 

  • Wang, J.G., Leung, C.F., Chow, Y.K.: Numerical solutions for flow in porous media. Int. J. Numer. Anal. Methods Geomech. 27(7), 565–583 (2003)

    Article  Google Scholar 

  • Wang, S., Huang, Y., Civan, F.: Experimental and theoretical investigation of the Zaoyuan field heavy oil flow through porous media. J. Petrol. Sci. Eng. 50(2), 83–101 (2006)

    Article  Google Scholar 

  • Warren, J.E., Root, P.J.: The behavior of naturally fractured reservoirs. Soc. Pet. Eng. 3(3), 245–255 (1963)

    Article  Google Scholar 

  • Wei, J.P., Wei, L., Wang, D.K.: Experimental study of moisture content influences on permeability of coal containing gas. J. China Coal Soc. 39(a), 97–103 (2014)

    Google Scholar 

  • Wu, Y., Liu, J., Chen, Z., Elsworth, D., Pone, D.: A dual poroelastic model for CO\(_{2}\)-enhanced coalbed methane recovery. Int. J. Coal Geol. 86(2–3), 177–189 (2011)

    Article  Google Scholar 

  • Xu, M., Dehghanpour, H.: Advances in understanding wettability of gas shales. Energy Fuels 28, 4362–4375 (2014)

    Article  Google Scholar 

  • Ye, Z.H., Chen, D., Wang, J.G.: Evaluation of the non-Darcy effect in coalbed methane production. Fuel 121, 1–10 (2014)

    Article  Google Scholar 

  • Yokoyama, T., Nishiyama, N.: Role of water film in weathering of porous rhyolite under water unsaturated condition. Procedia Earth Planet. Sci. 7, 916–919 (2013)

    Article  Google Scholar 

  • Zhang, H., Liu, J., Elsworth, D.: How sorption-induced matrix deformation affects gas flow in coal seams: a new FE model. Int. J. Rock Mech. Min. Sci. 45(8), 1226–1236 (2008)

    Article  Google Scholar 

  • Zhu, W.C., Wei, C.H., Liu, J., Qu, H.Y., Elsworth, D.: A model of coal–gas interaction under variable temperatures. Int. J. Coal Geol. 86(2), 213–221 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial support from Creative Research and Development Group Program of Jiangsu Province (2014-27), Innovation Project for Graduates in Jiangsu Province (KYLX15-1409) and the Fundamental Research Funds for Central Universities (Grant Nos. 2015XKZD02, 2015XKZD03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, T., Wang, J.G., Gao, F. et al. Impact of Water Film Evaporation on Gas Transport Property in Fractured Wet Coal Seams. Transp Porous Med 113, 357–382 (2016). https://doi.org/10.1007/s11242-016-0698-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-016-0698-7

Keywords

Navigation