Skip to main content
Log in

Free-Flow–Porous-Media Coupling for Evaporation-Driven Transport and Precipitation of Salt in Soil

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Evaporative salinization of soil is a common issue observed in arid and coastal regions. This process is driven by mass, momentum and energy exchange between the porous medium and the free-flow region. To analyze such coupled systems, we present a representative elementary volume-scale model concept for coupling non-isothermal multi-phase compositional porous-media flow and single-phase compositional laminar free flow. Our numerical results illustrate evaporation behavior from a porous medium initially saturated with NaCl solution, manifesting its influence on dissolved salt distribution, salt precipitation and porous-media properties. We show that the new model is capable to capture the evaporation physics for different stages of evaporative salinization and compare the numerical results to two different experimental datasets: (1) cumulative mass loss of water and dissolved salt during stage-1 of saline water evaporation and (2) evaporation rate for different stages of evaporative salinization. In addition, influence of the initial salt concentration on the saline water saturation vapor pressure and transition to stage-2 evaporation are analyzed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Alazmi, B., Vafai, K.: Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transf. 44(9), 1735–1749 (2001). doi:10.1016/S0017-9310(00)00217-9

    Article  Google Scholar 

  • Baber, K., Mosthaf, K., Flemisch, B., Helmig, R., Mthing, S., Wohlmuth, B.: Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J. Appl. Math. 77(6), 887–909 (2012). doi:10.1093/imamat/hxs048

    Article  Google Scholar 

  • Bastian, P., Blatt, M., Dedner, A., Engwer, C., Klfkorn, R., Kornhuber, R., Ohlberger, M., Sander, O.: A generic grid interface for parallel and adaptive scientific computing. part ii: implementation and tests in dune. Computing 82(2–3), 121–138 (2008). doi:10.1007/s00607-008-0004-9

    Article  Google Scholar 

  • Battistelli, A., Calore, C., Pruess, K.: The simulator tough2/ewasg for modelling geothermal reservoirs with brines and non-condensible gas. Geothermics 26(4), 437–464 (1997). doi:10.1016/S0375-6505(97)00007-2

    Article  Google Scholar 

  • Batzle, M.L., Wang, Z.: Seismic properties of pore fluids. Geophysics 57, 1396–1408 (1992). doi:10.1190/1.1443207

    Article  Google Scholar 

  • Beavers, G.S., Joseph, D.D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967). doi:10.1017/S0022112067001375

    Article  Google Scholar 

  • Bechtold, M., Haber-Pohlmeier, S., Vanderborght, J., Pohlmeier, A., Ferre, T.P.A., Vereecken, H.: Near-surface solute redistribution during evaporation. Geophys. Res. Lett. 38 (2011). doi:10.1029/2011GL048147

  • Belleghem, M.V., Steeman, M., Janssen, H., Janssens, A., Paepe, M.D.: Validation of a coupled heat, vapour and liquid moisture transport model for porous materials implemented in cfd. Build. Environ. 81(0), 340–353 (2014). doi:10.1016/j.buildenv.2014.06.024

    Article  Google Scholar 

  • Chandesris, M., Jamet, D.: Boundary conditions at a fluid–porous interface: an a priori estimation of the stress jump coefficients. Int. J. Heat Mass Transf. 50(1718), 3422–3436 (2007). doi:10.1016/j.ijheatmasstransfer.2007.01.053

  • Chandesris, M., Jamet, D.: Boundary conditions at a planar fluid–porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 49(1314), 2137–2150 (2006). doi:10.1016/j.ijheatmasstransfer.2005.12.010

  • Chandesris, M., Jamet, D.: Jump conditions and surface-excess quantities at a fluid/porous interface: a multi-scale approach. Transp. Porous Media 78(3), 419–438 (2009). doi:10.1007/s11242-008-9302-0

    Article  Google Scholar 

  • Class, H., Helmig, R., Bastian, P.: Numerical simulation of non-isothermal multiphase multicomponent processes in porous media.: 1. An efficient solution technique. Adv. Water Resour. 25(5), 533–550 (2002). doi:10.1016/S0309-1708(02)00014-3

    Article  Google Scholar 

  • Defraeye, T., Blocken, B., Derome, D., Nicolai, B., Carmeliet, J.: Convective heat and mass transfer modelling at air-porous material interfaces: overview of existing methods and relevance. Chem. Eng. Sci. 74, 49–58 (2012). doi:10.1016/j.ces.2012.02.032

    Article  Google Scholar 

  • Derluyn, H., Moonen, P., Carmeliet, J.: Deformation and damage due to drying-induced salt crystallization in porous limestone. J. Mech. Phys. Solids 63(0), 242–255 (2014). doi:10.1016/j.jmps.2013.09.005

    Article  Google Scholar 

  • Espinosa, R.M., Franke, L., Deckelmann, G., Gunstmann, C.: Gekoppelter wärme- und stofftransport einschlieälich der korrosionsprozesse in poräsen baustoffen mit dem simulationsprogramm astra. Bauphysik 29(3), 187–193 (2007). doi:10.1002/bapi.200710026

    Article  Google Scholar 

  • Fisher, E.A.: Some factors affecting the evaporation of water from soil. J Agric. Sci. 13, 121–143 (1923). doi:10.1017/S0021859600003270

    Article  Google Scholar 

  • Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: DUNE for multi-phase, component, scale, physics, flow and transport in porous media. New computational methods and software tools. Adv. Water Resour. 34(9), 1102–1112 (2011). doi:10.1016/j.advwatres.2011.03.007

    Article  Google Scholar 

  • Fujimaki, H., Shimano, T., M, I., Nakane, K.: Effect of a salt crust on evaporation from a bare saline soil. Vadose Zone J. 5(4), 1246–1256 (2006). doi:10.2136/vzj2005.0144

    Article  Google Scholar 

  • Gamazo, P., Bea, S., Saaltink, M., Carrera, J., Ayora, C.: Modeling the interaction between evaporation and chemical composition in a natural saline system. J. Hydrol. 401(34), 154–164 (2011). doi:10.1016/j.jhydrol.2011.02.018

    Article  Google Scholar 

  • Gamazo, P., Saaltink, M., Carrera, J., Slooten, L., Bea, S.: A consistent compositional formulation for multiphase reactive transport where chemistry affects hydrodynamics. Adv. Water Resour. 35, 83–93 (2012). doi:10.1016/j.advwatres.2011.09.006

    Article  Google Scholar 

  • Gardner, W.R., Fireman, M.: Laboratory studies of evaporation from soil columns in the presence of a water table. Soil Sci. 85(5), 244–249 (1958)

    Article  Google Scholar 

  • Giorgis, T., Carpita, M., Battistelli, A.: 2d modeling of salt precipitation during the injection of dry co2 in a depleted gas reservoir. Geologic carbon sequestration and methane hydrates research from the TOUCH symposium 2006. Energy Convers. Manag. 48(6), 1816–1826 (2007). doi:10.1016/j.enconman.2007.01.012

    Article  Google Scholar 

  • Hassanizadeh, S.M., Gray, W.G.: Derivation of conditions describing transport across zones of reduced dynamics within multiphase systems. Water Resour. Res. 25(3), 529–539 (1989). doi:10.1029/WR025i003p00529

    Article  Google Scholar 

  • Helmig, R.: Multiphase Flow and Transport Processes in the Subsurfaces : A Contribution to the Modelling of Hydrosystems. Springer, Berlin (1997)

    Book  Google Scholar 

  • Jamet, D., Chandesris, M., Goyeau, B.: On the equivalence of the discontinuous one- and two-domain approaches for the modeling of transport phenomena at a fluid/porous interface. Transp. Porous Media 78(3), 403–418 (2009). doi:10.1007/s11242-008-9314-9

    Article  Google Scholar 

  • Kelly, S.F., Selker, J.S.: Osmotically driven water vapor transport in unsaturated soils. Soil Sci. Soc. Am 65, 16341641 (2001)

    Article  Google Scholar 

  • Koniorczyk, M.: Heat and moisture transport in porous building materials containing salt. J. Build. Phys. 31(4), 279 (2008)

    Article  Google Scholar 

  • Koniorczyk, M.: Salt transport and crystallization in non-isothermal, partially saturated porous materials considering ions interaction model. Int. J. Heat Mass Transf. 55(4), 665–679 (2012). doi:10.1016/j.ijheatmasstransfer.2011.10.043

    Article  Google Scholar 

  • Lehmann, P., Assouline, S., Or, D.: Characteristic lengths affecting evaporative drying of porous media. Phys. Rev. E 77, 056,309 (2008). doi:10.1103/PhysRevE.77.056309

    Article  Google Scholar 

  • Lehmann, P., Or, D.: Evaporation and capillary coupling across vertical textural contrasts in porous media. Phys. Rev. E 80, 046,318 (2009). doi:10.1103/PhysRevE.80.046318

    Article  Google Scholar 

  • Manthey, S.: Two-Phase Flow Processes with Dynamic Effects in Porous Media—Parameter Estimation and Simulation. Ph.D. thesis, Universitt Stuttgart, Holzgartenstr. 16, 70174 Stuttgart (2006)

  • Michaelides, E.E.: Thermophysical properties of the geothermal fluids. Geotherm. Res. Counc. 5 (1981)

  • Millington, R., Quirk, J.: Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961)

    Article  Google Scholar 

  • Mosthaf, K., Baber, K., Flemisch, B., Helmig, R., Leijnse, A., Rybak, I., Wohlmuth, B.: A coupling concept for two-phase compositional porous medium and single-phase compositional free flow. Water Resour. Res. 47 (2011). doi:10.1029/2011WR010685

  • Mosthaf, K., Helmig, R., Or, D.: Modeling and analysis of evaporation processes from porous media on the rev scale. Water Resour. Res. 50(2), 1059–1079 (2014). doi:10.1002/2013WR014442

    Article  Google Scholar 

  • Nachshon, U., Shahraeeni, E., Or, D., Dragila, M., Weisbrod, N.: Infrared thermography of evaporative fluxes and dynamics of salt deposition on heterogeneous porous surfaces. Water Resour. Res. 47 (2011). doi:10.1029/2011WR010776

  • Nachshon, U., Weisbrod, N., Dragila, M.I., Grader, A.: Combined evaporation and salt precipitation in homogeneous and heterogeneous porous media. Water Resour. Res. 47 (2011). doi:10.1029/2010WR009677

  • Nicolai, A., Grunewald, J., Zhang, J.S.: Salztransport und phasenumwandlung—modellierung und numerische lösung im simulationsprogramm delphin 5. Bauphysik 29(3), 231–239 (2007). doi:10.1002/bapi.200710032

    Article  Google Scholar 

  • Norouzi Rad, M., Shokri, N., Sahimi, M.: Pore–scale dynamics of salt precipitation in drying porous media. Phys. Rev. E 88, 32404 (2013)

    Article  Google Scholar 

  • Nuske, P., Joekar-Niasar, V., Helmig, R.: Non-equilibrium in multiphase multicomponent flow in porous media: an evaporation example. Int. J. Heat Mass Transf. 74(0), 128–142 (2014). doi:10.1016/j.ijheatmasstransfer.2014.03.011

    Article  Google Scholar 

  • Or, D., Lehmann, P., Sharaeeni, E., Shokri, N.: Advances in soil evaporation physics—a review. Vadose Zone J. (2013). doi:10.2136/vzj2012.0163

  • Saffman, R.: On the boundary condition at the surface of the porous medium. Stud. Appl. Math. 50, 93–101 (1971)

    Article  Google Scholar 

  • Saneinejad, S., Moonen, P., Defraeye, T., Derome, D., Carmeliet, J.: Coupled cfd, radiation and porous media transport model for evaluating evaporative cooling in an urban environment. 13th international conference on wind engineering. J. Wind Eng. Ind. Aerodyn. 104–106, 455–463 (2012). doi:10.1016/j.jweia.2012.02.006

    Article  Google Scholar 

  • Shahraeeni, E., Lehmann, P., Or, D.: Coupling of evaporative fluxes from drying porous surfaces with air boundary layer: characteristics of evaporation from discrete pores. Water Resour. Res. 48(9), n/a-n/a (2012). doi:10.1029/2012WR011857

    Google Scholar 

  • Shahraeeni, E., Or, D.: Thermo-evaporative fluxes from heterogeneous porous surfaces resolved by infrared thermography. Water Resour. Res. 46(9), n/a-n/a (2010). doi:10.1029/2009WR008455

    Google Scholar 

  • Sharma, D.R., Prihar, S.S.: Effect of depth and salinity of groundwater on evaporation and soil salinization. Ind. J. Agric. Sci. 43(6), 582–586 (1973)

    Google Scholar 

  • Shavit, U.: Transport phenomena at the interface between fluid and porous domains. Transp. Porous Media 78(3), 327–330 (2009). doi:10.1007/s11242-009-9414-1

    Article  Google Scholar 

  • Shokri, N.: Pore–scale dynamics of salt transport and distribution in drying porous media. Phys. Fluids 26(1), 012106 (2014)

    Article  Google Scholar 

  • Shokri, N., Salvucci, G.: Evaporation from porous media in the presence of a water table. Vadose Zone J. 10(4), 1309–1318 (2011). doi:10.2136/vzj2011.0027

    Article  Google Scholar 

  • Somerton, W.H., El-Shaarani, A.H., Mobarak, S.M.: High temperature Behavior of Rocks Associated with Geothermal Type Reservoirs. In: SPE California Regional Meeting. Society of Petroleum Engineers, San Francisco, California (1974). doi:10.2118/4897-MS

  • Steiger, M., Kiekbusch, J., Nicolai, A.: An improved model incorporating pitzer’s equations for calculation of thermodynamic properties of pore solutions implemented into an efficient program code. Constr. Build. Mater. 22(8), 1841–1850 (2008). doi:10.1016/j.conbuildmat.2007.04.020

    Article  Google Scholar 

  • van Duijn, C.J., Pop, I.S.: Crystal dissolution and precipitation in porous media: pore scale analysis. Journal fuer die reine und angewandte Mathematik 2004(577), 171–211 (2005). doi:10.1515/crll.2004.2004.577.171

    Google Scholar 

  • Van Genuchten, M.T.: A closed-from equation for predicting the hydraulic conductivity of unstructured soil. Soil Sci. Soc. Am. J. 44, 892–898 (1980)

    Article  Google Scholar 

  • Verma, A., Pruess, K.: Thermohydrological conditions and silica redistribution near high-level nuclear wastes emplaced in saturated geological formations. J. Geophys. Res. Solid Earth 93(B2), 1159–1173 (1988). doi:10.1029/JB093iB02p01159

    Article  Google Scholar 

  • Xu, T., Ontoy, Y., Molling, P., Spycher, N., Parini, M., Pruess, K.: Reactive transport modeling of injection well scaling and acidizing at tiwi field, Philippines. Selected papers from the TOUGH symposium 2003. Geothermics 33(4), 477–491 (2004). doi:10.1016/j.geothermics.2003.09.012

    Article  Google Scholar 

  • Zeidouni, M., Pooladi-Darvish, M., Keith, D.: Analytical solution to evaluate salt precipitation during CO2 injection in saline aquifers. Int. J. Greenh. Gas Control 3(5), 600–611 (2009). doi:10.1016/j.ijggc.2009.04.004

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the German research foundation (DFG) under the frame work of the International research and training group NUPUS (GRK 1398). We thank Mansoureh Norouzi Rad, School of chemical engineering and analytical sciences, University of Manchester, and Dr. Karin Schmid, Institut für Wasser- und Umweltsystemmodellierung, University of Stuttgart, for their valuable support and inputs. Dr. Nima Shokri acknowledges the donors of the American Chemical Society Petroleum Research Fund (ACS-PRF) for partial support of the experimental work (PRF No. 52054-DNI6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Jambhekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambhekar, V.A., Helmig, R., Schröder, N. et al. Free-Flow–Porous-Media Coupling for Evaporation-Driven Transport and Precipitation of Salt in Soil. Transp Porous Med 110, 251–280 (2015). https://doi.org/10.1007/s11242-015-0516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-015-0516-7

Keywords

Navigation