Skip to main content

Advertisement

Log in

Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Limestone dissolution by \(\hbox {CO}_2\)-rich brine induces critical changes of the pore network geometrical parameters such as the pore size distribution, the connectivity, and the tortuosity which govern the macroscopic transport properties (permeability and dispersivity) that are required to parameterize the models, simulating the injection and the fate of \(\hbox {CO}_2\). A set of four reactive core-flood experiments reproducing underground conditions (\(T = 100\,^{\circ }\hbox {C}\) and \(P = 12\) MPa) has been conducted for different \(\hbox {CO}_2\) partial pressures \((0.034 < P_{\mathrm{CO}_2}< 3.4\; \hbox {MPa})\) in order to study the different dissolution regimes. X-ray microtomographic images have been used to characterize the changes in the structural properties from pore scale to Darcy scale, while time-resolved pressure loss and chemical fluxes enabled the determination of the sample-scale change in porosity and permeability. The results show the growth of localized dissolution features associated with high permeability increase for the highest \(P_{\mathrm{CO}_2}\), whereas dissolution tends to be more homogeneously distributed for lower values of \(P_{\mathrm{CO}_2}\). For the latter, the higher the \(P_{\mathrm{CO}_2}\), the more the dissolution patterns display ramified structures and permeability increase. For the lowest value of \(P_{\mathrm{CO}_2}\), the preferential dissolution of the calcite cement associated with the low dissolution kinetics triggers the transport that may locally accumulate and form a microporous material that alters permeability and produces an anti-correlated porosity–permeability relationship. The combined analysis of the pore network geometry and the macroscopic measurements shows that \(P_{\mathrm{CO}_2}\) regulates the tortuosity change during dissolution. Conversely, the increase of the exponent value of the observed power law permeability–porosity trend while \(P_{\mathrm{CO}_2}\) increases, which appears to be strongly linked to the increase of the effective hydraulic diameter, depends on the initial rock structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Archie, G.E.: Classification of carbonate reservoir rocks and petrophysical considerations. AAPG Bull. 36, 278–298 (1952)

    Google Scholar 

  • Bachu, S., Adams, J.: Sequestration of CO\(_2\) in geological media in response to climate change: capacity of deep saline aaquifers to sequester CO\(_2\) solution. Energy Convers. Manag. 44, 3157–3175 (2003)

    Article  Google Scholar 

  • Battiato, I., Tartakovsky, D.: Applicability regimes for macroscopic models of reactive transport in porous media. J. Contami. Hydrol. 120–121, 18–26 (2011). doi:10.1016/j.jconhyd.2010.05.005

    Article  Google Scholar 

  • Bear, J.: Dynamics of Fluid in Porous Media. Dover, New York (1988)

    Google Scholar 

  • Ben Clennell, M.: Tortuosity: a guide through the maze. Dev. Petrophys. Geol. Soc. Lond. Special Publ. 122, 299–344 (1997)

    Article  Google Scholar 

  • Bernabe, Y., Brace, W., Evans, B.: Permeability, porosity and pore geometry of hot-pressed calcite. Mech. Mater. 1, 173–183 (1982). doi:10.1016/0167-6636(82)90010-2

    Article  Google Scholar 

  • Blum, H.: A transformation for extracting New descriptors of shape. In: Wathen-Dunn, W. (ed.) Models for the Perception of Speech and Visual Form, pp. 362–380. MIT Press, Cambridge (1967). http://citeseer.nj.nec.com/context/77000/0

  • Carman, P.: Fluid flow through granular beds. Trans. Inst. Chem. Eng. 15, 150 (1937)

    Google Scholar 

  • Daccord, G., Lenormand, R., Litard, O.: Chemical dissolution of a porous medium by a reactive fluid-I. Model for the “wormholing” phenomenon. Chem. Eng. Sci. 48(1), 169–178 (1993)

    Article  Google Scholar 

  • de Marsily, G.: Hydrogeologie Quantitative. Masson, Rio de Janeiro (1981)

    Google Scholar 

  • Dentz, M., Gouze, P., Russian, A., Dweik, J., Delay, F.: Diffusion and trapping in heterogeneous media: an inhomogeneous continuous time random walk approach. Adv. Water Resour. 49, 13–20 (2012)

    Article  Google Scholar 

  • Dullien, F.: Porous Media: Fluid Transport and Pore Structure. Academic Press, San Diego (1992)

    Google Scholar 

  • Epstein, N.: On tortuosity and the tortuosity factor in flow and diffusion through porous media. Chem. Eng. Sci. 44, 777–779 (1989)

    Article  Google Scholar 

  • Flannery, B.P., Deckman, H.W., Roberge, W.G., Dámico, K.L.: Three-dimensional X-ray microtomography. Science 237, 1439–1444 (1987)

    Article  Google Scholar 

  • Focke, J., Munn, D.: Cementation exponents in Middle Eastern carbonate reservoir. Soc. Petrol. Eng. Form. Evaluation 2, 155–167 (1987)

    Google Scholar 

  • Fredd, C.N., Fogler, H.S.: Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44(9), 1933–1949 (1998)

    Article  Google Scholar 

  • Glassley, W.E., Simmons, A.M., Kercher, J.R.: Mineralogical heterogeneity in fractured, porous media and its representation in reactive transport models. Appl. Geochem. 17(6), 699–708 (2002)

    Article  Google Scholar 

  • Golfier, F., Zarcone, C., Bazin, B., Lenormand, R., Lasseux, D., Quintard, M.: On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium. J. Fluid Mech. 457, 213–254 (2002)

    Article  Google Scholar 

  • Gouze, P., Luquot, L.: X-ray microtomography characterization of porosity, permeability and reactive surface changes during dissolution. J. Contam. Hydrol. 120–121(C), 44–55 (2011)

    Google Scholar 

  • Hoefner, M.L., Fogler, H.S.: Pore evolution and channel formation during flow and reaction in porous media. AIChE J. 34(1), 45–54 (1988)

    Article  Google Scholar 

  • Holloway, S.: An overview of the undergunder disposal of carbon dioxide. Energy Convers. Manag. 38, 193–198 (1997)

    Article  Google Scholar 

  • Hoshen, J., Kopelman, R.: Percolation and cluster distribution. I. Cluster multiple labeling technique and critical concentration algorithm. Phys. Rev. B 14(8), 3438–3445 (1976). doi:10.1103/PhysRevB.14.3438

    Article  Google Scholar 

  • ISRM: Suggested methods for determing water content, porosity, density, absorption and related properties and swelling and slake durability index properties, in rock characterization, testing and monitoring. Tech. rep., International Society for Rock Mechanics (1979)

  • Jamtveit, B., Yardley, B.: Fluid Flow and Transport in Rocks: Mechanisms and Effects. Chapman and Hall, London (1997)

    Google Scholar 

  • Kozeny, J.: Über die kapillare leitung des wassers im boden. Sitz. Ber. Akad. Wiss. Wien, Math. Nat. 136, 271–306 (1927)

    Google Scholar 

  • Lasaga, A.: Kinetic Theory in the Earth Sciences. Princeton Series in Geochemistry. Princeton University Press, Princeton (1998)

    Google Scholar 

  • Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994). doi:10.1006/cgip.1994.1042

    Google Scholar 

  • Lichtner, P., Steefel, C., Oelkers, E.H.: Reactive Transport in Porous Media. Mineralogical Society of America, Washington, DC (1997)

    Google Scholar 

  • Lindquist, W.B., Venkatarangan, A.: Investigating 3D geometry of porous media from high resolution images. Phys. Chem. Earth Part A 24(7), 593–599 (1999). doi:10.1016/S1464-1895(99)00085-X

    Article  Google Scholar 

  • Luquot, L., Gouze, P.: Experimental determination of porosity and permeability changes induced by injection of CO\(_2\) into carbonate rocks. Chem. Geol. 265(1–2), 148–159 (2009)

    Article  Google Scholar 

  • Luquot, L., Andreani, M., Gouze, P., Camps, P.: CO\(_2\) percolation experiment through chlorite/zeolite-rich sandstone (Pretty Hill Formation—Otway Basin-Australia). Chem. Geol. 294–295, 75–88 (2012). (Cited By (since 1996):3)

  • Madonna, C., Almqvist, B.S., Saenger, E.H.: Digital rock physics: numerical prediction of pressure-dependent ultrasonic velocities using micro-CT imaging. Geophys. J. Int. 189(3), 1475–1482 (2012). doi:10.1111/j.1365-246X.2012.05437.x. http://gji.oxfordjournals.org/content/189/3/1475.abstract, Accessed 31 Oct 2013

  • Mangane, P.O., Gouze, L., Gouze, P., Luquot, L.: Permeability impairment of a limestone reservoir triggered by heterogeneous dissolution and particle migration during CO\(_2\)-rich injection. Geophys. Res. Lett. 40(17), 4614–4619 (2013) doi:10.1002/grl.50595.

  • Mavko, G., Nur, A.: The effect of a percolation threshold in the Kozeny–Carman relation. Geophysics 62, 1480–1482 (1997)

    Article  Google Scholar 

  • Meijster, A., Roerdink, J.B., Hesselink, W.H.: A general algorithm for computing distance transforms in linear time. Math. Morphol. Appl. Image Signal Process 18, 331–340 (2002)

    Google Scholar 

  • Meile, C., Tuncay, K.: Scale dependence of reaction rates in porous media. Adv. Water Resour. 29(1), 62–71 (2006)

    Article  Google Scholar 

  • Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48(3) (2012). doi:10.1029/2011WR011404

  • Montenato, C., Guery, F.,Berthou, P.: In: Proceeding of the Ocean Drilling Program 103 (1988)

  • Mougenot, D., Monteiro, J., Dupeuble, P., Malod, J.: La marge continentale sud -portugaise: évolution structurale et sédimentaire. Ciencias da Terra 5, 223–246 (1979)

    Google Scholar 

  • Noiriel, C., Gouze, P., Bernard, D.: Investigation of porosity and permeability effects from microstructure changes during limestone dissolution. Geophysical. Res. Lett. 31(24), 1–4 (2004)

    Article  Google Scholar 

  • Noiriel, C., Luquot, L., Mad, B., Raimbault, L., Gouze, P., van der Lee, J.: Changes in reactive surface area during limestone dissolution: an experimental and modelling study. Chem. Geol. 265(1—-2), 160–170 (2009)

    Article  Google Scholar 

  • Palain, C.: Une srie dtritique terrigne. les grs de silves: Trias et lias infrieur du portugal. Tech. rep., Servicio Geologico Portugal (1979)

  • Pape, H., Clauser, C., Iffland, J.: Permeability prediction based on fractal pore-space geometry. Geophysics 64(5), 1447–1460 (1999)

    Article  Google Scholar 

  • Parkhurst, D.L., Appelo, C.A.J.: User guide to phreeqc (version2). A computer program for speciation, batch-reaction, one-dimensional, transport. 99–4259 (1999)

  • Qajar, J., Francois, N., Arns, C.H.: Micro-tomographic characterization of dissolution-induced local porosity changes including fines migration in carbonate rock. Soc. Petrol. Eng. 1, 117–134 (2012)

    Google Scholar 

  • Rege, S.D., Fogler, H.S.: Network model for straining dominated particle entrapment in porous media. Chem. Eng. Sci. 42(7), 1553–1564 (1987)

    Article  Google Scholar 

  • Renard, F., Gratier, J.P., Ortoleva, P., Brosse, E., Bazin, B.: Self-organization during reactive fluid flow in a porous medium. Geophys. Res. Lett. 25(3), 385–388 (1998)

    Article  Google Scholar 

  • Robinson, R., Stokes, R.H.: Elctrolyte solutions: The Measurement and Interpretation of Condutance, Chemical Potential and Diffusion in Solutions of Simple Electrolytes. Butterworths, London (1959)

    Google Scholar 

  • Schechter, R., Gidley, J.: The change in pore size distribution from surface reaction in porous media. AIChE J. 15, 339–350 (1969)

    Article  Google Scholar 

  • Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, 1st edn. Springer, Berlin (2008)

    Book  Google Scholar 

  • Spirkovska, L.: A summary of image segmentation techniques: Nasa technical memorandum. Tech. rep., NASA, California USA (1993). http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19940006802_1994006802.pdf, Accessed 17 July 2013

  • Steefel, C., Lasaga, A.: Evolution of dissolution patterns: permeability change due to coupled flow and reaction. In: Melchior, D., Bassett, R.L. (eds.) Chemical Modeling of Aqueous Systems II. American Chemical Society, Washington, DC (1990)

    Google Scholar 

  • Torquato, S.: Random Heterogeneous Materials: Microstructure and Macroscopic Properties. Springer, Berlin (2002)

    Book  Google Scholar 

  • Verwer, K., Eberli, G., Weger, R.: Effects of pore structure on electrical resistivity in carbonates. AAPG Bull. 95–2, 175–190 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by TOTAL S.A. and by the PANACEA project (European Community FP7/2007-2013, ENERGY.2011.5.2-1 under grant agreement no. 282900). We would like to thank Dimitri Laurent for contribution in the course of his Master Degree and Paul Tafforeau and Elodie Boller from ESRF for their precious help during the XMT acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Luquot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 964 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luquot, L., Rodriguez, O. & Gouze, P. Experimental Characterization of Porosity Structure and Transport Property Changes in Limestone Undergoing Different Dissolution Regimes. Transp Porous Med 101, 507–532 (2014). https://doi.org/10.1007/s11242-013-0257-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-013-0257-4

Keywords

Navigation