Skip to main content

Advertisement

Log in

Buoyancy Effects on Upward Brine Displacement Caused by CO2 Injection

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO2 injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C R :

Heat capacity of the formation (J kg−1K−1)

d :

Molecular diffusivity (m2s−1)

g :

Acceleration of gravity vector (m s−2)

F :

Darcy flux vector (kg m2 s−1)

h :

Enthalpy (J kg−1)

k :

Permeability (m2)

M :

Mass accumulation term (kg m−3)

n :

Outward unit normal vector

NK :

Number of components

P :

Total pressure (Pa)

q v :

Volumetric source term (kg m−3s−1)

S :

Salinity fraction

t :

Time (s)

T :

Temperature (°C)

u :

Internal energy (J kg−1)

V :

Volume (m3)

X :

Mass fraction

Y :

Y-coordinate

Z :

Z-coordinate (positive upward)

Γ:

Surface area (m2)

K :

Mass components (superscript)

λ :

Thermal conductivity (J s−1 m−1K−1)

μ :

Dynamic viscosity (kg m−1 s−1)

ρ :

Density (kg m−3)

τ o :

Reference tortuosity

\({\phi}\) :

Porosity

l:

Liquid

R:

Rock (formation)

References

  • Apps J.A., Zheng L., Zhang Y., Xu T., Birkholzer J.T.: Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transp. Porous Media 82(1), 215–246 (2010)

    Article  Google Scholar 

  • Bachu S., Burwash R.A.: Regional-scale analysis of the geothermal regime in the western canada sedimentary basin. Geothermics 20(5–6), 387–407 (1991)

    Article  Google Scholar 

  • Bethke C.M.: A numerical model of compaction-driven groundwater flow and heat transfer and its application to the paleohydrology of intracratonic sedimentary basins. J. Geophys. Res. 90, 6817–6828 (1985)

    Article  Google Scholar 

  • Bethke C.M.: Hydrologic constraints on genesis of the Upper Mississippi Valley Mineral District from Illinois Basin brines. Econ. Geol. 81, 233–249 (1986)

    Article  Google Scholar 

  • Birkholzer J.T., Zhou Q.: Basin-scale hydrogeological impacts of CO2 storage: regulatory and capacity implications. Int. J. Greenh. Gas Control 3(6), 745–756 (2009)

    Article  Google Scholar 

  • Birkholzer J.T., Zhou Q., Tsang C.F.: Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int. J. Greenh. Gas Control 3(2), 181–194 (2009)

    Article  Google Scholar 

  • Carey W.J., Wigand M., Chipera S.J., WoldeGabriel G., Pawar R., Lichtner P.C., Wehner S.C., Raines M.A., Guthrie G.D. Jr: Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int. J. Greenh. Gas Control 1(1), 75–85 (2007)

    Article  Google Scholar 

  • Doughty C., Myer L.R.: Scoping calculations on leakage of CO2 in geologic storage: the impact of overburden permeability, phase trapping, and dissolution. In: McPherson, B.J., Sundquist, E.T. (eds) Carbon Sequestration and Its Role in the Global Carbon Cycle, Geophysical Monograph Series, Vol. 183, pp. 350. American Geophysical Union, Washington, DC (2009)

    Google Scholar 

  • Garven G., Freeze R.A.: Theoretical analysis of the role of groundwater flow in the genesis of stratabound ore deposits. 1. Mathematical and numerical model. Am. J. Sci. 284, 1085–1124 (1984)

    Article  Google Scholar 

  • Gasda S.E., Bachu S., Celia M.A.: Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ. Geol. 46, 707–720 (2004)

    Article  Google Scholar 

  • Gunter W.D., Bachu S., Benson S.: The role of hydrogeological and geochemical trapping in sedimentary basins for secure geological storage of carbon dioxide. Geol. Soc. Lond. Special Publ. 233, 129–145 (2004)

    Article  Google Scholar 

  • Gupta N., Bair E.S.: Variable-density flow in the midcontinent basins and Arches Region of the United States. Water Resour. Res. 33(8), 1785–1802 (1997)

    Article  Google Scholar 

  • Hayek M., Mouche E., Mügler C.: Modeling vertical stratification of CO2 injected into a deep layered aquifer. Adv. Water Resour. 32, 450–462 (2009)

    Article  Google Scholar 

  • Hindle A.D.: Petroleum migration pathways and charge concentration: a three-dimensional model. AAPG Bull. 81(9), 1451–1481 (1997)

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC): Special report on CO2 capture and storage, IPCC, 2005. In: Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.), 431 pp. Cambridge University Press, UK (2005)

  • Intergovernmental Panel on Climate Change (IPCC): Fourth Assessment Report: Climate Change 2007 (AR4). In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds) Contribution of Working Group I, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007a)

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) : Fourth Assessment Report: Climate Change 2007 (AR4). In: Metz, B., Davidson, O.R., Bosch, P.R., Dave, R., Meyer, L.A. (eds) Contribution of Working Group III, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA (2007b)

    Google Scholar 

  • International Energy Agency (IEA): Statistics for world total primary energy supply. http://www.iea.org/stats/graphresults.asp?COUNTRY_CODE=29 (2010)

  • International Formulation Committee (IFC): A Formulation of the Thermodynamic Properties of Ordinary Water Substance. IFC Secretariat, Düsseldorf, Germany (1967)

  • Nicot J.-P.: Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int. J. Greenh. Gas Control 2(4), 582–593 (2008)

    Article  Google Scholar 

  • Nicot J.-P., Hovorka S.D., Choi J.-W.: Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1(1), 4411–4418 (2009)

    Article  Google Scholar 

  • Nicot J.-P., Oldenburg C.M., Bryant S.L., Hovorka S.D.: Pressure perturbations from geologic carbon sequestration: area-of-review boundaries and borehole leakage driving forces. Energy Procedia 1(1), 47–54 (2009)

    Article  Google Scholar 

  • Nield D.A.: Onset of thermohaline convection in a porous medium. Water Resour. Res. 4(3), 553–560 (1968)

    Article  Google Scholar 

  • Nordbotten J.M, Celia M.A., Bachu S.: Analytical solutions for leakage rates through abandoned wells. Water Resour. Res. 40, W04204 (2004). doi:10.1029/2003WR002997

    Article  Google Scholar 

  • Oldenburg C.M., Pruess K.: Dispersive transport dynamics in a strongly coupled groundwater brine flow system. Water Resour. Res. 31(2), 289–302 (1995)

    Article  Google Scholar 

  • Oldenburg C.M., Pruess K.: Layered thermohaline convection in hypersaline geothermal systems. Trans. Porous Media 33, 26–63 (1998)

    Article  Google Scholar 

  • Oldenburg C.M., Pruess K.: Plume separation by transient thermohaline convection in porous media. Geophys. Res. Lett. 26(19), 2997–3000 (1999)

    Article  Google Scholar 

  • Pacala, S., Socolow R.: Stabilization wedges: solving the climate problem for the next 50 years with current technologies. Science 13 305(5686), 968–972 (2004)

    Google Scholar 

  • Phillips O.M.: Flow and Reactions in Permeable Rocks, pp. 285. Cambridge Univ. Press, Cambridge, UK (1991)

    Google Scholar 

  • Pruess, K., Oldenburg, C.M., Moridis, G.J.: TOUGH2 User’s Guide Version 2. E. O. Lawrence Berkeley National Laboratory Report LBNL-43134 (November 1999)

  • Pruess K.: On CO2 fluid flow and heat transfer behavior in the subsurface following leakage from a geologic storage reservoir. Environ. Geol. 54(8), 1677–1686 (2008)

    Article  Google Scholar 

  • Silin D., Patzek T.W., Benson S.M.: A one-dimensional model of vertical gas plume migration through a heterogeneous porous medium. Int. J. Greenh. Gas Control 3, 300–310 (2009)

    Article  Google Scholar 

  • Stommel H., Fedorov K.N.: Small scale structure in temperature and salinity near Timor and Mindanao. Tellus 19, 306–325 (1967)

    Article  Google Scholar 

  • Turner J.S.: Buoyancy Effects in Fluids, pp. 368. Cambridge University Press, Cambridge (1973)

    Google Scholar 

  • Zhang Y., Oldenburg C.M., Finsterle S.: Percolation-theory and fuzzy rule-based probability estimation of fault leakage at geologic carbon sequestration sites. Env. Earth Sci. 59(7), 1447–1459 (2010)

    Article  Google Scholar 

  • Zheng L., Apps J.A., Zhang Y., Xu T., Birkholzer J.T.: Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1(1), 1887–1894 (2009)

    Article  Google Scholar 

  • Zhou Q., Birkholzer J.T., Tsang C.-F., Rutqvist J.: A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations. Int. J. Greenh. Gas Control 2(4), 626–639 (2008)

    Article  Google Scholar 

  • Zhou Q., Birkholzer J.T., Mehnert E., Lin Y.-F., Zhang K.: Modeling basin- and plume-scale process of CO2 storage for full-scale deployment. Ground Water 48(4), 494–514 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis M. Oldenburg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldenburg, C.M., Rinaldi, A.P. Buoyancy Effects on Upward Brine Displacement Caused by CO2 Injection. Transp Porous Med 87, 525–540 (2011). https://doi.org/10.1007/s11242-010-9699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-010-9699-0

Keywords

Navigation