Skip to main content
Log in

Microspore derived population developed from an inter-specific hybrid (Brassica oleracea × B. carinata) through a modified protocol provides insight into B genome derived black rot resistance and inter-genomic interaction

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Inter-specific hybridization between different species of Brassicas is widely practiced to broaden the genetic base and inter-genomic transfer of desirable traits. A large population of inter-specific hybrids (B. oleracea × B. carinata) were developed through direct embryo culture for introgression of black rot resistance from B into C sub-genome of Brassicas. Inter-specific hybrids were resistant to race 1 and 4 of black rot. A large set of microspores derived (MD) plants were developed using partially fertile inter-specific hybrids for the first time using a modified culture density, temperature shock treatment and polyamine supplement. Forty-three B and 323 C sub-genome specific SSRs were analysed in 117 MD plants along with their ploidy analysis. Frequent occurrence of unreduced and B. carinata like gametes and large number of anueploids in the MD plants was because of single set of B sub-genome (BCC) in the mother plant. Aneuploids for C sub-genome indicate meiotic abnormality in paring between C sub-genome of B. oleracea and B. carinata. Role of B7 and B5 for resistance to Xcc1 and B6 and B2 for resistance to Xcc4 was established. The unique MD population developed will be instrumental in broadening the genetic base of B. oleracea and studying the genetics for various traits using chromosome addition/deletion lines and aneuploids.

Key Message

Microspore derived plants from a sesquidiploid (Brassica oleracea × B. carinata) elucidates B genome conferred black rot resistance (Xcc1 and Xcc4) and meiotic abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahman M, EI-Sayed M, Sato S, Hirakawa H et al (2017) RNA-sequencing-based transcriptome and biochemical analyses of steroidal saponin pathway in a complete set of Allium fistulosum- A. cepa monosomic addition lines. PloS One 12:e0181784

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmadi B, Shariatpanahi ME, Ojaghkandi MA, Heydari AA (2014) Improved microspore embryogenesis induction and plantlet regeneration using putrescine, cefotaxime and vancomyc in Brassica napus L. Plant Cell Tiss Organ Cult 118:497–505

    Article  CAS  Google Scholar 

  • An D, Zheng Q, Liu Q, Ma P, Zhang H et al (2015) Molecular cytogenetic identification of a new wheat rye 6R chromosome disomic addition line with powdery mildew resistance. PLoS One 10:e0134534

    Article  PubMed  PubMed Central  Google Scholar 

  • Atri C, Akhatar J, Gupta M, Gupta N, Goyal A, Rana K, Kaur R, Mittal M, Sharma A, Singh MP, Sandhu PS, Barbetti MJ, Banga SS (2019) Molecular and genetic analysis of defensive responses of Brassica juncea – B. fruticulosa introgression lines to Sclerotinia infection. Sci Rep 9:17089

    Article  PubMed  PubMed Central  Google Scholar 

  • Ayotte R, Harney PM, Souza Machado V (1987) The transfer of triazine resistance from Brassica napus L. to B. oleracea L. I. Production of F1 hybrids through embryo rescue. Euphytica 36:615–624

    Article  Google Scholar 

  • Bastola DR, Minocha SC (1995) Increased putrescine biosynthesis through transfer of mouse ornithine decarboxylase cDNA in carrot promotes somatic embryogenesis. Plant Physiol 109:63–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertoldi D, Tassoni A, Martinelli L, Bangi N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  CAS  PubMed  Google Scholar 

  • Bhatia R, Dey SS, Parkash C, Sharma K, Sood S, Kumar R (2018) Modification of important factors for efficient microspore embryogenesis and doubled haploid production in field grown white cabbage (Brassica oleracea var. capitata L.) genotypes in India. Sci Hortic 233:178–187

    Article  Google Scholar 

  • Bhatia R, Dey SS, Sood S, Sharma K, Parkash C, Kumar R (2017) Efficient microspore embryogenesis in cauliflower (Brassica oleracea var. botrytis L.) for development of plants with different ploidy level and their use in breeding programme. Sci Hortic 216:83–92

    Article  Google Scholar 

  • Bhatia R, Dey SS, Sood S, Sharma K, Sharma VK, Parkash C, Kumar R (2016) Optimizing protocol for efficient microspore embryogenesis and doubled haploid development in different maturity groups of cauliflower (Brassica oleracea var. botrytis L.) in India. Euphytica 212:439–454

    Article  Google Scholar 

  • Chiang MS, Chiang BY, Grant WF (1977) Transfer of resistance to race 2 of Plasmodiophora brassicae from Brassica napus to cabbage (B. oleracea var. ‘capitata’). I. Interspecific hybridization between B. napus and B. oleracea var. ‘capitata’. Euphytica 26:319–326

    Article  Google Scholar 

  • Cousin A, Heel K, Cowling WA, Nelson MN (2009) An efficient high-throughput flow cytometric method for estimating DNA ploidy level in plants. Cytometry A 75:1015–1019

    Article  CAS  PubMed  Google Scholar 

  • Dewi IS, Purwoko BS (2008) Role of polyamines in inhibition of ethylene biosynthesis and their effects on rice anther culture development. Indones J Agric Sci 9:60–67

    Article  Google Scholar 

  • Dey SS, Sharma K, Dey RB, Kumar GMS, Singh D, Kumar R, Parkash C (2015) Inter specific hybridization (Brassica carinata × Brassica oleracea) for introgression of black rot resistance genes into Indian cauliflower (B. oleracea var. botrytis L.). Euphytica 204:149–162

    Article  Google Scholar 

  • Diederichsen E, Sacristan MD (1994) The use of ovule culture in reciprocal hybridization between B. campestris L. and B. oleracea L. Plant Breed 113:79–82

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fargier E, Manceau C (2007) Pathogenicity assays restrict the species Xanthomonas campestris into three pathovars and reveal nine races within X. campestris pv. campestris. Plant Pathol 56:805–818

    Article  Google Scholar 

  • Ferrie AMR, Caswell KL (2011) Isolated microspore culture techniques and recent progress for haploid and doubled haploid plant production. Plant Cell Tiss Organ Cult 104:301–309

    Article  Google Scholar 

  • Ferrie AMR, Mollers C (2011) Haploids and doubled haploids in Brassica spp. for genetic and genomic research. Plant Cell Tiss Organ Cult 104:375–386

    Article  Google Scholar 

  • Gowers S, Christey MC (1999) Intercrossing Brassica napus and Brassica oleracea to introgress characters from kale to rape. 10th Int Rapeseed Congress, Canberra, Australia.

  • Harberd DJ, McArthur ED (1980) Meiotic analysis of some species and genus hybrids in the Brassiceae. In: Tsunoda S, Hinata K, Gomez-Campo C (eds) Brassica Crops and Wild Allies, Biology and Breeding, Jpn. Sci Soc Press, Tokyo, pp 65–87

    Google Scholar 

  • Hayward AC (1993) The hosts of Xanthomonas. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman & Hall, London, pp 1–119

    Google Scholar 

  • Huang B, Bird S, Kemble R, Simmonds D, Keller W, Miki B (1990) Effects of culture density, conditioned medium and feeder cultures on microspore embryogenesis in Brassica napus L. cv. Topas Plant Cell Rep 8:594–597

    Article  CAS  PubMed  Google Scholar 

  • Hutton SF, Scott JW, Yang W, Sim SC, Francis DM, Jones JB (2010) Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Theor Appl Genet 121:1275–1287

    Article  CAS  PubMed  Google Scholar 

  • Kaur-Sawhney R, Tiburcio AF, Altabella T, Galston AW (2003) Polyamines in plants: an overview. J Cell Mol Biol 2:1–12

    Google Scholar 

  • Kevers C, Gal NL, Monteiro M, Dommes J, Gaspar T (2000) Somatic embryogenesis for Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathway. Plant Growth Regul 31:209–214

    Article  CAS  Google Scholar 

  • Lee J, Izzah NK, Jayakodi M, Perumal S, Joh HJ, Lee HJ et al (2015) Genome-wide SNP identification and QTL mapping for black rot resistance in cabbage. BMC Plant Biol 15:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Chen Y, Yue F, Qian W, Song H (2018) Microspore culture reveals high fitness of B. napus-like gametes in an interspecific hybrid between Brassica napus and B. oleracea. PLoS One 13:e0193548

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Q, Zhou Q, Mei J, Zhang Y et al (2014) Improvement of Brassica napus via interspecific hybridization between B. napus and B. oleracea. Mol Breed 34:1955–1963

    Article  CAS  Google Scholar 

  • Mason AS, Nelson MN, Yan GJ, Cowling WA (2011) Production of viable male unreduced gametes in Brassica interspecific hybrids is genotype specific and stimulated by cold temperatures. BMC Plant Biol 11:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Massomo SMS, Mabagala RB, Swai IJ, Hockenhull J, Mortensen CN (2004) Evaluation of varietal resistance in cabbage against the black rot pathogen, Xanthomonas campestris pv. campestris in Tanzania. Crop Protect 23:315–325

    Article  Google Scholar 

  • Meng L, Lu M (1993) Genotype effects of Brassica napus on its reproductive behavior after pollination with B. juncea. Theor Appl Genet 87:238–242

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Navabi ZK, Stead KE, Pires JC, Xiong Z, Sharpe AG, Parkin IAP, Rahman MH, Good AG (2011) Analysis of B-genome chromosome introgression in interspecific hybrids of Brassica napus x B. carinata. Genetics 187:659–673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson MN, Mason AS, Castello MC, Thomson L, Yan G, Cowling WA (2009) Microspore culture preferentially selects unreduced (2n) gametes from an interspecific hybrid of Brassica napus L. × Brassica carinata Braun. Theor Appl Genet 119:497–505

    Article  PubMed  Google Scholar 

  • Nishiyama I, Sarashima M, Matsuzawa Y (1991) Critical discussion of abortive interspecific crosses in Brassica. Plant Breed 107:288–302

    Article  Google Scholar 

  • Prakash S, Takahata Y, Kirti PB, Chopra VL (1999) Cytogenetics. In: Gomez-Campo C (ed) Biology of Brassica coenospecie. Elsevier, Amsterdam, pp 59–106

    Chapter  Google Scholar 

  • Qian W, Chen X, Fu D, Zou J, Meng J (2005) Intersubgenomic heterosis in seed yield potential observed in a new type of Brassica napus introgressed with partial Brassica rapa genome. Theor Appl Genet 110:1187–1194

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Saha P, Kalia P, Sonah H, Sharma TR (2014) Molecular mapping of black rot resistance locus Xca1bo on chromosome 3 in Indian cauliflower (Brassica oleracea var. botrytis L.). Plant Breed 133:268–274

    Article  CAS  Google Scholar 

  • Sharma BB, Kalia P, Singh D, Sharma TR (2017) Introgression of black rot resistance from Brassica carinata to cauliflower (Brassica oleracea botrytis Group) through embryo rescue. Front Plant Sci 8:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma BB, Kalia P, Yadava DK, Singh D, Sharma TR (2016) Genetics and molecular mapping of black rot resistance locus Xca1bc on chromosome B-7 in Ethiopian mustard (Brassica carinata A. Braun). PLoS One 11:e0152290

    Article  PubMed  PubMed Central  Google Scholar 

  • Silkova OG, Shchapova AI, Shumny VK (2011) Patterns of meiosis in ABDR amphihaploids depend on the specific type of univalent chromosome division. Euphytica 178:415–426

    Article  Google Scholar 

  • Simmonds DH, Keller WA (1999) Significance of preprophase bands of microtubules in the induction of microspore embryogenesis of Brassica napus. Planta 208:383–391

    Article  CAS  Google Scholar 

  • Singh S, Dey SS, Bhatia R, Batley J, Kumar R (2018) Molecular breeding for resistance to black rot [Xanthomonas campestris pv. campestris (Pammel) Dowson] in Brassicas: recent advances. Euphytica 214:196

    Article  Google Scholar 

  • Singh S, Dey SS, Bhatia R, Kumar R, Sharma K, Behera TK (2019) Heterosis and combining ability in cytoplasmic male sterile and doubled haploid based Brassica oleracea progenies and prediction of heterosis using microsatellites. PLoS One 14:e0210772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soengas P, Hand P, Vicente JG, Pole J, Pink D (2007) Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114:637–645

    Article  CAS  PubMed  Google Scholar 

  • Thiruvengadam M, Rekha KT, Jayabalan N, Praveen N, Kim EH, Chung IM (2013) Effect of exogenous polyamines enhances somatic embryogenesis via suspension cultures of spine guard (Momordica dioidca Roxb. ex. Wild). Australian J Crop Sci 7:446–453

    CAS  Google Scholar 

  • Tonguc M, Griffiths PD (2004a) Evaluation of Brassica carinata accessions for resistance to black rot (Xanthomonas campestris pv. campestris). HortScience 39:952–954

    Article  Google Scholar 

  • Tonguc M, Griffiths PD (2004b) Transfer of powdery mildew resistance from Brassica carinata to Brassica oleracea through embryo rescue. Plant Breed 123:587–589

    Article  Google Scholar 

  • Tonguc M, Griffiths PD (2004c) Development of black rot resistant interspecific hybrids between Brassica oleracea L. cultivars and Brassica accession A19182, using embryo rescue. Euphytica 136:313–318

    Article  Google Scholar 

  • Tonu NN, Doullah MA, Shimizu M, Karim MM, Kawanabe T, Fujimoto R et al (2013) Comparison of Positions of QTLs Conferring Resistance to Xanthomonas campestris pv. campestris in Brassica oleracea. Am J of Plant Sci 4:11–20

    Article  Google Scholar 

  • Touraev A, Vincente O, Heberle-Bors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Article  Google Scholar 

  • U N (1935) Genome analysis in Brassica with special reference to the experimental formation of B.napus and peculiar mode of fertilization. Jpn J Bot 7:389–452

    Google Scholar 

  • Vicente JG, Conway J, Roberts S, Taylor J (2001) Identification and origin of Xanthomonas campestris pv. campestris races and related pathovars. Phytopathology 91:492–499

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Holub EB (2013) Xanthomonas campestris pv. campestris (cause of black rot of crucifers) in the genomic era is still a worldwide threat to Brassica crops. Mol Plant Pathol 14:2–18

    Article  CAS  PubMed  Google Scholar 

  • Vicente JG, Taylor JD, Sharpe AG, Parkin IAP, Lydiate DJ, King GJ (2002) Inheritance of race-specific resistance to Xanthomonas campestris pv. campestris in Brassica genomes. Phytopathology 92:1134–1141

    Article  CAS  PubMed  Google Scholar 

  • Wu X-B, Wang J, Liu J-H, Deng X-X (2009) Involvement of polyamine biosynthesis in somatic embryogenesis of Valencia sweet orange (Citrus sinensis) induced by glycerol. J Plant Physiol 166:52–62

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  CAS  PubMed  Google Scholar 

  • Yan M, Liu X, Chunyun G, Liu L, Xiang J, Ying L, Liu Z (2014) Cloning of TTG1 gene and PCR identification of genomes A, B and C in Brassica species. Genetica 142:169–176

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Scarth R (1995) Microspore culture of hybrids between Brassica napus and B. campestris. Acta Botanica Sinica 37:848–855

    Google Scholar 

Download references

Acknowledgements

We are thankful to SERB, Department of Science and Technology (Govt. of India) for providing research grant (Grant number: SR/FT/LS-73/2011- S. S. Dey and SB/FT/LS-236/2012- Reeta Bhatia). We are also thankful to ICAR-Indian Agricultural Research Institute, New Delhi for providing support in conducting the research work.

Author information

Authors and Affiliations

Authors

Contributions

SSD and RB conceptualised the research work and involved in data analysis and preparing the manuscript. KS, SS, CP, AP and RK are involved in conducting the laboratory and field experiment, data recording and preparation of manuscript. DS and AP has done the disease screening of the plants for Xcc.

Corresponding author

Correspondence to S. S. Dey.

Ethics declarations

Conflict of interest

The authors declare there is no conflict of interests.

Additional information

Communicated by A. M. R. Ferrie.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, R., Sharma, K., Parkash, C. et al. Microspore derived population developed from an inter-specific hybrid (Brassica oleracea × B. carinata) through a modified protocol provides insight into B genome derived black rot resistance and inter-genomic interaction. Plant Cell Tiss Organ Cult 145, 417–434 (2021). https://doi.org/10.1007/s11240-021-02018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-021-02018-1

Keywords

Navigation