Skip to main content
Log in

Infection with Micromonospora strain SB3 promotes in vitro growth of Lolium multiflorum plantlets

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cattle breeding is an important economical activity in Argentina, highly dependent on grass production. In the last decades, grasslands zones were reduced and confined to less productive lands due to the advance of agronomical cultures. Therefore, it is important to develop new strategies to improve forage production. New eco-friendly trends in plant growth promotion include the use of microbial endophytes, but the in vitro studies of plant-bioinoculant interactions is limited by the scarce current technological development. In this work, we use a micropropagation protocol for Lolium multiflorum, developed in a previous work, to study the effect of bacterization with actinobacterial endophytes, isolated from Argentine native grasses, on the growth of L. multiflorum in vitro plantlets. To achieve this objective, L. multiflorum plantlets were inoculated with three Micromonospora strains (SB3, TW2.1 and TW2.2). The results obtained showed that the effect of actinobacterial inoculation depends on the Micromonospora strain used. The inoculation with SB3 promoted plant growth, increasing plant biomass, root length and the rate of plantlets ready to be acclimatized after 4 weeks of in vitro culture. Strain TW2.1 did not show, statistically, differences compared to control treatments, while TW2.2 inhibited plant growth, decreasing plant biomass, root length and the rate of plants ready to acclimatize. Our results showed that Micromonospora strain SB3 could be a good candidate to use in breeding programs for L. multiflorum and other grasses to increase their yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bashan Y (1998) Inoculants of plant growth-promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de-Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998-2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PAHM. (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  PubMed  CAS  Google Scholar 

  • Bustamante E, Ruiz M, Morici E, Babinec FJ, Pordomingo AB (2012) Biomasa acumulada e indicadores de calidad nutritiva en cebadilla chaqueña (Bromus auleticus Trinius ex Nees). RIA Revista de investigaciones agropecuarias 38:251–256

    Google Scholar 

  • Carro L, Spröer C, Alonso P, Trujillo ME (2012) Diversity of Micromonospora strains isolated from nitrogen fixing nodules and rhizosphere of Pisum sativum analyzed by multilocus sequence analysis. Syst Appl Microbiol 35:73–80

    Article  PubMed  Google Scholar 

  • Carro L, Pujic P, Trujillo ME, Normand P (2013) Micromonospora is a normal inhabitant of actinorhizal nodules. J Biosci 38:685–693

    Article  PubMed  Google Scholar 

  • Carro L, Riesco R, Spröer C, Trujillo ME (2016) Micromonospora ureilytica sp. nov., Micromonospora noduli sp. nov. and Micromonospora vinacea sp. nov., isolated from Pisum sativum nodules. Int J Syst Evol Microbiol 66:3509–3514

    Article  PubMed  CAS  Google Scholar 

  • Della Mónica IF, Olivero L, Scervino JM, Novas MV. (2017). Novel endophytic actinobacterial strains isolated from Bromus auleticus with activity against phytopathogenic fungi. Dissertation, XXXVI Jornadas Argentinas de Botánica, Universidad Nacional de Cuyo, Mendoza, Argentina. P. 118, http://botanicaargentina.com.ar/wp-content/uploads/2017/09/SAB-2018.pdf

  • García LC, Martínez-Molina E, Trujillo ME (2010) Micromonospora pisi sp. nov., isolated from root nodules of Pisum sativum. Int J Syst Evol Microbiol 60:331–337

    Article  PubMed  Google Scholar 

  • Gasser M, Ramos J, Vegetti A, Tivano JC (2005) Digestión de láminas foliares de Bromus auleticus Trin. Ex Nees sometidas a diferentes tiempos de incubación ruminal. Agric Técnica 65:48–54

    Google Scholar 

  • Giri CC, Praveena M (2015) In vitro regeneration, somatic hybridization and genetic transformation studies: an appraisal on biotechnological interventions in grasses. Plant Cell Tissue Organ Cult 120:843–860

    Article  CAS  Google Scholar 

  • Glickmann E, Dessaux Y (1995) A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl Environ Microbiol 61:793–796

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gopal M, Gupta A (2016) Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7:1971

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Alekhya G, Prakash B, Kudapa H, Rathore A, Varshney RK (2015) The extent of grain yield and plant growth enhancement by plant growth-promoting broad-spectrum Streptomyces sp. in chickpea. Springerplus 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Goudjal Y, Toumatia O, Sabaou N, Barakate M, Mathieu F, Zitouni A (2013) Endophytic actinomycetes from spontaneous plants of Algerian Sahara: indole-3-acetic acid production and tomato plants growth promoting activity. World J Microbiol Biotechnol 29:1821–1829

    Article  PubMed  CAS  Google Scholar 

  • Hastuti RD, Lestart Y, Suwanto A, Saraswati R (2012) Endophytic Streptomyces spp. as biocontrol agents of rice bacterial leaf blight pathogen (Xanthomonas oryzae pv. oryzae). HAYATI J Biosci 19(4):155–162

    Article  Google Scholar 

  • Kaewkla O, Thamchaipinet A, Franco CM (2017) Micromonospora terminaliae sp. nov., an endophytic actinobacterium isolated from the surface-sterilized stem of the medicinal plant Terminalia mucronata. Int J Syst Evol Microbiol 67:225–230

    Article  PubMed  Google Scholar 

  • Khamna S, Yokota A, Lumyong S (2009) Actinomycetes isolated from medicinal plants rhizosphere soils: diversity and screening of antifungal compounds, indole-3-acetic acid and siderophore production. World J Microbiol Biotechnol 25:649–655

    Article  CAS  Google Scholar 

  • Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N, Thawai C (2015) Micromonospora oryzae sp. nov., isolated from roots of upland rice. Int J Syst Evol Microbiol 65:3818–3823

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Larraburu EE, Llorente BE (2015) Anatomical changes induced by Azospirillum brasilense in in vitro rooting of pink lapacho. Plant Cell Tissue Organ Cult 122:175–184

    Article  CAS  Google Scholar 

  • Martínez-Hidalgo P, Galindo-Villardón P, Trujillo ME, Igual JM, Martínez-Molina E (2014) Micromonospora from nitrogen fixing nodules of alfalfa (Medicago sativa L.). A new promising plant probiotic bacteria. Sci Rep 4:6389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nabti E, Bensidhoum L, Tabli N, Dahel D, Weiss A, Rothballer M, Schmid M, Hartmann A (2014) Growth stimulation of barley and biocontrol effect on plant athogenic fungi by a Cellulosimicrobium sp. strain isolated from salt-affected rhizosphere soil in northwestern Algeria. Eur J Soil Biol 61:20–26

    Article  CAS  Google Scholar 

  • Orlikowska T, Nowak K, Reed B (2017) Bacteria in the plant tissue culture environment. Plant Cell Tissue Organ Cult 128:487–508

    Article  CAS  Google Scholar 

  • Ørskov J (1923) Investigations into the morphology of ray fungi. Levin and Munksgaard, Copenhagen

    Google Scholar 

  • Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773

    Article  PubMed  CAS  Google Scholar 

  • Parray JA, Kamili AN, Reshi ZA, Quadri RA, Jan S (2015) Interaction of rhizobacterial strains for growth improvement of Crocus sativus L. under tissue culture conditions. Plant Cell Tissue Organ Cult 121:325–334

    Article  CAS  Google Scholar 

  • Prasad R, Kamal S, Sharma PK, Oelmüller R, Varma A (2013) Root endophyte Piriformospora indica DSM 11827 alters plant morphology, enhances biomass and antioxidant activity of medicinal plant Bacopa monniera. J Basic Microbiol 53:1016–1024

    Article  PubMed  CAS  Google Scholar 

  • Quambusch M, Brümmer J, Haller K, Winkelmann T, Bartsch M (2016) Dynamics of endophytic bacteria in plant in vitro culture: quantification of three bacterial strains in Prunus avium in different plant organs and in vitro culture phases. Plant Cell Tissue Organ Cult 126:305–317

    Article  Google Scholar 

  • Regalado JJ, Vignale MV, Novas MV, Pitta-Alavarez SI, Iannone L (2017) Epichloë occultans enhances micropropagation efficiency in Lolium multiflorum. Plant Cell Tissue Organ Cult 130:37–46

    Article  CAS  Google Scholar 

  • Rodriguez RJ, White JFJ, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    Article  PubMed  CAS  Google Scholar 

  • Sathya A, Vijayabharathi R, Srinivas V, Gopalakrishnan S (2016) Plant growth-promoting actinobacteria on chickpea seed mineral density: an upcoming complementary tool for sustainable biofortification strategy. 3 Biotech 6:138

    Article  PubMed  PubMed Central  Google Scholar 

  • Sessitsch A, Mitter B (2015) 21st century agriculture: integration of plant microbiomes for improved crop production and food security. Microb Biotechnol 8:32–33

    Article  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Solans M (2007) Discaria trinervis—Frankia symbiosis promotion by saprohytic actinomycetes. J Basic Microbiol 47:243–250

    Article  PubMed  Google Scholar 

  • Solans M, Vobis G, Wall LG (2009) Actinomycetes promote nodulation in Medicago sativa-Sinorhizobium meliloti symbiosis in the presence of high N. J Plant Growth Regul 28:106–114

    Article  CAS  Google Scholar 

  • Solans M, Vobis G, Cassán F, Luna V, Wall LG (2011) Production of phytohormones by root-associated saprophytic actinomycetes isolated from the actinorhizal plant Ochetophila trinervis. World J Microbiol Biotechnol 27:2195–2202

    Article  CAS  Google Scholar 

  • Solans M, Scervino JM, Messuti MI, Vobis G, Wall LG (2016) Potential biocontrol actinobacteria: Rhizospheric isolates from the Argentine Pampas lowlands legumes. J Basic Microbiol 56:1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Soriano A (1992) Río de la Plata grasslands. Natural grasslands. Introduction and Western Hemisphere. Ecosystems of the world 8A. Elsevier, Amsterdam

    Google Scholar 

  • Sreevidyaa M, Gopalakrishnanb S, Kudapab H, Varshneyb RK (2016) Exploring plant growth-promotion actinomycetes from vermicompost and rhizosphere soil for yield enhancement in chickpea. Braz J Microbiol 47:85–95

    Article  CAS  Google Scholar 

  • Thanaboripat D, Thawai C, Kittiwongwattana C, Laosinwattana C, Koohakan P, Parinthawong N (2015) Micromonospora endophytica sp. nov., an endophytic actinobacteria of Thai upland rice (Oryza sativa). J Antibiot 68:680–684

    Article  PubMed  CAS  Google Scholar 

  • Thawai C, Kittiwongwattana C, Thanaboripat D, Laosinwattana C, Koohakan P, Parinthawong N (2016) Micromonospora soli sp. nov., isolated from rice rhizosphere soil. Antonie Leeuwenhoek 109:449–456

    Article  PubMed  CAS  Google Scholar 

  • Thomas J, Ajay D, Kumar RR, Mandal AKA (2010) Influence of beneficial microorganisms during in vivo acclimatization of in vitro-derived tea (Camellia sinensis) plants. Plant Cell Tissue Organ Cult 101:365–370

    Article  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Schumann P, Carro L, Martinez-Molina E (2006) Micromonospora coriariae sp. nov., isolated from root nodules of Coriaria myrtifolia. Int J Syst Evol Microbiol 56:2381–2385

    Article  PubMed  CAS  Google Scholar 

  • Trujillo ME, Kroppenstedt RM, Fernández-Molinero C, Schumann P, Martínez-Molina E (2007) Micromonospora lupini sp. nov. and Micromonosporasa elicesensis sp. nov., isolated from root nodules of Lupinus angustifolius. Int J Syst Evol Microbiol 57:2799–2804

    Article  PubMed  CAS  Google Scholar 

  • Trujillo ME, Alonso-Vega P, Rodríguez R, Carro L, Cerda E, Alonso P, Martínez-Molina E (2010) The genus Micromonospora is widespread in legume root nodules: the example of Lupinus angustifolius. ISME J 4:1265–1281

    Article  PubMed  Google Scholar 

  • Trujillo ME, Bacigalupe R, Pujic P, Igarashi Y, Benito P, Riesco R, Médigue C, Normand P (2014) Genome features of the endophytic actinobacterium Micromonospora lupini strain Lupac08: on the process of adaptation to an endophytic lifestyle? PLoS ONE 9:e108522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trujillo ME, Riesco R, Benito P, Carro L (2015) Endophytic actinobacteria and the Interaction of Micromonospora and nitrogen fixing plants. Front Microbiol 6:1341

    Article  PubMed  PubMed Central  Google Scholar 

  • Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356

    Article  PubMed  PubMed Central  Google Scholar 

  • Valdés M, Pérez NO, Estrada de Los Santos P, Caballero-Mellado J, Peña-Cabriales JJ, Normand P, Hirsch AM (2005) Non-Frankia actinomycetes isolated from surface sterilized roots of Casuarina equisetifolia fix nitrogen. Appl Environ Microbiol 71:460–466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Shanker K, Kalra A (2015) Fungal endophytes enhanced the growth and production kinetics of Vinca minor hairy roots and cell suspensions grown in bioreactor. Plant Cell Tissue Organ Cult 118:257–268

    Article  CAS  Google Scholar 

  • Wang J, Pembleton LW, Cogan NOI, Forster JW (2016a) Evidence for heterosis in italian ryegrass (Lolium multiflorum Lam.) based on inbreeding depression in F2 generation offspring from biparental crosses. Agronomy 6:49

    Article  CAS  Google Scholar 

  • Wang X, Yam TW, Meng Q, Zhu J, Zhang P, Wu H, Wang J, Zhao Y, Song X (2016b) The dual inoculation of endophytic fungi and bacteria promotes seedlings growth in Dendrobium catenatum (Orchidaceae) under in vitro culture conditions. Plant Cell Tissue Organ Cult 126:523–531

    Article  CAS  Google Scholar 

  • Wei Z, Jousset A (2017) Plant breeding goes microbial. Trends Plant Sci 22:555–558

    Article  PubMed  CAS  Google Scholar 

  • Wilson D (1995) Endophytes: the evolution of the term, a clarification of its use and definition. Oikos 73:274–276

    Article  Google Scholar 

  • Yandigeri MS, Meena KK, Singh D, Malviya N, Singh DP, Solanki MK, Yadav AK, Arora DK (2012) Drought-tolerant endophytic actinobacteria promote growth of wheat (Triticum aestivum) under water stress conditions. Plant Growth Regul 68:411–420

    Article  CAS  Google Scholar 

  • Zhao J, Guo L, Liu C, Zhang Y, Guan X, Li J, Xu S, Xiang W, Wang X (2016) Micromonospora lycii sp. nov., a novel endophytic actinomycete isolated from wolfberry root (Lycium chinense Mill). J Antibiot 69:153–158

    Article  PubMed  CAS  Google Scholar 

  • Zhao S, Liu C, Zheng W, Ma Z, Cao T, Zhao J, Yan K, Xiang W, Wang X (2017) Micromonospora parathelypteridis sp. nov., an endophytic actinomycete with antifungal activity isolated from the root of Parathelypteris beddomei (Bak.) Ching. Int J Syst Evol Microbiol 67:268–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from Agencia Nacional de Promoción Científica y Tecnológica (PICT 2014-3315) CONICET (Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina) Grant PIP 11220150100956CO and from Universidad de Buenos Aires UBACyT 20020150100067BA and 20020150200075BA. Doctors Regalado Gonzalez and Della Mónica are Post-Doctoral Fellows at CONICET.

Author information

Authors and Affiliations

Authors

Contributions

DMIF designed and executed the in vitro experiments, isolated and identified the actinobacterial strains used and collaborated in the writing of the manuscript. NMV performed the statistical analysis, provided the plant material and collaborated in the improvement of the manuscript. ILJ realized the strains molecular pairwise comparison, provided the plant material and critically review the manuscript and improve the text. GQ did the IAA quantification, analyzing the statistic differences among strains and collaborate in the manuscript improvement. SJM did the molecular identification of the actinobacteria and critically review the manuscript. PASI designed the in vitro experiments, revised the manuscript critically for important intellectual content and reviewed the English of the manuscript. RJJ designed and executed the in vitro experiments and wrote the manuscript.

Corresponding author

Correspondence to J. J. Regalado.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Sergio J. Ochatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Mónica, I.F., Novas, M.V., Iannone, L.J. et al. Infection with Micromonospora strain SB3 promotes in vitro growth of Lolium multiflorum plantlets. Plant Cell Tiss Organ Cult 134, 445–455 (2018). https://doi.org/10.1007/s11240-018-1434-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-018-1434-5

Keywords

Navigation