Skip to main content
Log in

BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

BpMADS12 is one of the SOC1-like genes isolated from Betula platyphylla. The expression pattern of BpMADS12 was detected in both vegetative and reproductive organs by real-time quantitative RT-PCR and promoter analyses. Analysis of the promoter region suggested that BpMADS12 is involved in abiotic stress and hormone responses. In this study, BpMADS12 was expressed in transgenic birch under the control of the CaMV 35S promoter. Our results showed that the transgene had no effect on flowering time, whereas it affected the number and size of female inflorescences and decreased the seed vigor. Plant morphology was also affected; the height and ground diameter were significantly greater in the transgenic birch than in nontransgenic line (NT). Levels of brassinosteroid (BR) and zeatinriboside (ZR) were higher in transgenic lines than in NT due to the overexpression of BpMADS12 in birch, which resulted in the up-regulation of some BR and ZR biosynthesis and signaling genes. We propose that BpMADS12is involved in hormone biosynthesis and signal-mediated growth and development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahn MS, Kim YS, Han JY, Yoon ES, Choi YE (2015) Panax ginseng PgMADS1, an AP1/FUL-like MADS-box gene, is activated by hormones and is involved in inflorescence growth. Plant Cell Tiss Organ Cult 122:161–173

    Article  CAS  Google Scholar 

  • Alvarez-Buylla ER, Liljegren SJ, Pelaz S, Gold SE, Burgeff C, Ditta GS, Vergara-Silva F, Yanofsky MF (2000) MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24:457–466

    Google Scholar 

  • Arora R, Agarwal P, Ray S, Singh AK, Singh VP, Tyagi AK, Kapoor S (2007) MADS-box gene family in rice: genome-wide identification, organization and expression profiling during reproductive development and stress. BMC Genom 8:242

    Article  Google Scholar 

  • Burgeff C, Liljegren SJ, Tapia-Lopez R, Yanofsky MF, Alvarez-Buylla ER (2002) MADS-box gene expression inlateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214:365–372

    Article  CAS  PubMed  Google Scholar 

  • Burko Y, Shleizer-Burko S, Yanai O, Shwartz I, Zelnik ID, Jacob-Hirsch J, Kela I, Eshed-Williams L, Ori N (2013) A role for APETALA1/fruitfull transcription factors in tomato leaf development. Plant Cell 25:2070–2083

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Cseke LJ, Zheng J, Podila GK (2003) Characterization of PTM5 in aspen trees: a MADS-box gene expressed during woody vascular development. Gene 318:55–67

    Article  CAS  PubMed  Google Scholar 

  • De Oliveira Dias BF, Simoes-Araujo JL, Russo CAM, Margis R, AlvesFerreira M (2005) Unraveling MADS-box gene family in Eucalyptus spp. : a starting point to an understanding of their developmental role in trees. Genet Mol Biol 28:501–510

    Article  Google Scholar 

  • Decroocq V, Zhu X, Kauffman M, Kyozuka J, Peacock WJ, Dennis ES, Llewellyn DJ (1999) A TM3-like MADS-box gene from Eucalyptus expressed in both vegetative and reproductive tissues. Gene 228:155–160

    Article  CAS  PubMed  Google Scholar 

  • Fridman Y, Savaldi-Goldstein S (2013) Brassinosteroids in growth control: how, when and where. Plant Sci 209:24–31

    Article  CAS  PubMed  Google Scholar 

  • Garay-Arroyo A, Ortiz-Moreno E, de la Paz Sánchez M, Murphy AS, García-Ponce B, Marsch-Martínez N, de Folter S, Corvera-Poiré A, Jaimes-Miranda F, Pacheco-Escobedo MA, Dubrovsky JG, Pelaz S, Álvarez-Buylla ER (2013) The MADS transcription factor XAL2/AGL14 modulates auxin transport during Arabidopsis root development by regulating PIN expression. EMBO J 32:2884–2895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goloveshkina EN, Shchennikova AV, Kamionskaya AM, Skryabin KG, Shulga OA (2012) Influence of ectopic expression of Asteraceae MADS box genes on plant ontogeny in tobacco. Plant Cell Tiss Organ Cult 109:61–71

    Article  CAS  Google Scholar 

  • Gutierrez-Cortines ME, Davies B (2000) Beyond the ABCs: ternary complex formation in the control of floral organ identity. Trends Plant Sci 5:471–476

    Article  CAS  PubMed  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database. Nucleic Acids Res 27:297–300

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hoenicka H, Nowitzki O, Hanelt D, Fladung M (2008) Heterologous overexpression of the birch FRUITFULL-like MADS-box gene BpMADS4 prevents normal senescence and winter dormancy in Populus tremula L. Planta 227:1001–1011

    Article  CAS  PubMed  Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Report 5:387–405

    Article  CAS  Google Scholar 

  • Kaufmann K, Muiño JM, Jauregui R, Airoldi CA, Smaczniak C, Krajewski P, Angenent GC (2009) Target genes of the MADS transcription factor SEPALLATA3: integration of developmental and hormonal pathways in the Arabidopsis flower. PLoS Biol 7:e1000090

    Article  PubMed Central  PubMed  Google Scholar 

  • Khanday I, Yadav SR, Vijayraghavan U (2013) Rice LHS1/OsMADS1 controls floret meristem specification by coordinated regulation of transcription factors and hormone signaling pathways. Plant Physiol 161:1970–1983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kimura Y, Aoki S, Ando E, Kitatsuji A, Watanabe A, Ohnishi M, Takahashi K, Inoue SI, Nakamichi N, Tamada Y, Kinoshita T (2015) A Flowering Integrator, SOC1, Affects Stomatal Opening in Arabidopsis thaliana. Plant Cell Physiol 56:640–649

    Article  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D (2011) Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23:2536–2552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu FF, Li HY, Wang S, Liu GF (2011) Cloning and periodic expression of BpSOC1 Gene in Betula platyphylla. J Northeast For Univ 4:1–4

    CAS  Google Scholar 

  • Liu Y, Xu HW, Jiang J, Liu GF (2014) Family selection of birch tetraploid half-sibling based on seed vigor and seedling growth traits. J Beijing For Univ 2:74–80

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lovisetto A, Masiero S, Rahim MA, Mendes MA, Casadoro G (2015) Fleshy seeds form in the basal Angiosperm Magnolia grandiflora and several MADS-box genes are expressed as fleshy seed tissues develop. Evol Dev 17:82–91

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Begum D, Chuang HW, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  CAS  PubMed  Google Scholar 

  • Mohri T, Igasaki T, Futamura N, Shinohara K (1999) Morphological changes in transgenic poplar induced by expression of the rice homeobox gene OSH1. Plant Cell Rep 18:816–819

    Article  CAS  Google Scholar 

  • Nakamura T, Fukuda T, Nakano M, Hasebe M, Kameya T, Kanno A (2005) The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers. Plant Mol Biol 58:435–445

    Article  CAS  PubMed  Google Scholar 

  • Nayar S, Sharma R, Tyagi AK, Kapoor S (2013) Functional delineation of rice MADS29 reveals its role in embryo and endosperm development by affecting hormone homeostasis. J Exp Bot 64:4239–4253

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15:1538–1551

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pasonen HL, Seppänen SK, Degefu Y, Rytkönen A, von Weissenberg K, Pappinen A (2004) Field performance of chitinase transgenic silver birches (Betula pendula): resistance to fungal diseases. Theor Appl Genet 109:562–570

    Article  CAS  PubMed  Google Scholar 

  • Perala DA, Alm AA (1990) Reproductive ecology of birch: a review. For Ecol Manage 32:1–38

    Article  Google Scholar 

  • Podila GK, Cseke LJ, Sen B, Karnosky DF (2004) Application of aspen MADS-BOX genes to alter reproduction and development in trees. United States patent no.US 2004/0019933 A1

  • Pradko AG, Litvinovskaya RP, Sauchuk AL, Drach SV, Baranovsky AV, Zhabinskii VN, Mirantsova TV, Khripach VA (2015) A new ELISA for quantification of brassinosteroids in plants. Steroids 97:78–86

    Article  CAS  PubMed  Google Scholar 

  • Rounsley SD, Ditta GS, Yanofsky MF (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7:1259–1269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schönrock N, Bouveret R, Leroy O, Borghi L, Köhler C, Gruissem W, Hennig L (2006) Polycomb-group proteins repress the floral activator AGL19 in the FLC-independent vernalization pathway. Genes 20:1667–1678

    Article  Google Scholar 

  • Walden AR, Wang DY, Walter C, Gardner RC (1998) A large family of TM3 MADS-box cDNA in Pinus radiata includes two members with deletions of the conserved K domain. Plant Sci 138:167–176

    Article  CAS  Google Scholar 

  • Weigel D, Meyerowitz EM (1994) The ABCs of floral homeotic genes. Cell 78:203–209

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Chen S, Wang S, Liu GF, Li HY, Huang HJ, Jiang J (2015) BpGH3.5, an early auxin-response gene, regulates root elongation in Betula platyphylla × Betula pendula. Plant Cell Tiss Organ Cult 120:239–250

    Article  CAS  Google Scholar 

  • Zhan YG, Liu ZH, Wang YC, Yang CP, Liu GF (2001) Transformation of insect resistant gene into birch. J Northeast For Univ 29:4–6

    CAS  Google Scholar 

  • Zhao Y, Li XY, Chen WJ, Peng XJ, Cheng X, Zhu SW, Cheng BJ (2011) Whole-genome survey and characterization of MADS-box gene family in maize and sorghum. Plant Cell Tiss Organ Cult 105:159–173

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by The Fundamental Research Funds for the Central Universities (No. DL12CA04) and the National Science and Technology Program of China during the 12th Five-Year Plan Period (No. 2013AA102704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Wu, D., Wang, Z. et al. BpMADS12 mediates endogenous hormone signaling: effect on plant development Betula platyphylla . Plant Cell Tiss Organ Cult 124, 169–180 (2016). https://doi.org/10.1007/s11240-015-0885-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-015-0885-1

Keywords

Navigation