Skip to main content
Log in

IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

S-adenosyl-methionine (SAM)-dependent methyltransferase (MTase) genes are a multigene family; however, only a few have been characterized at the functional level. In the present study, a novel salt-induced SAM-dependent MTase gene, named IbSIMT1, was isolated from salt-tolerant sweetpotato (Ipomoea batatas (L.) Lam.) line ND98. IbSIMT1 contains a DUF248 domain of unknown function and an MTase domain. Expression of IbSIMT1 was up-regulated in sweetpotato under salt stress and abscisic acid treatment. The IbSIMT1-overexpressing sweetpotato (cv. Shangshu 19) plants exhibited significantly higher salt tolerance compared with the wild-type. Proline content was significantly increased, whereas malonaldehyde content was significantly decreased in the transgenic plants. The activities of superoxide dismutase (SOD) and photosynthesis were significantly enhanced in the transgenic plants. H2O2 was also found to be significantly less accumulated in the transgenic plants than in the wild-type. Overexpression of IbSIMT1 up-regulated the salt stress responsive genes, including pyrroline-5-carboxylate synthase, pyrroline-5-carboxylate reductase, SOD, psbA and phosphoribulokinase genes under salt stress. These findings suggest that the novel IbSIMT1 gene is involved in sweetpotato salt tolerance and enhances salt tolerance of the transgenic sweetpotato plants by regulating osmotic balance, protecting membrane integrity and photosynthesis and increasing reactive oxygen species scavenging capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

Carb:

Carbenicillin

2,4-D:

2,4-Dichlorophenoxyacetic acid

DAB:

3,3′-Diaminobenzidine

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

MDA:

Malonaldehyde

MTase:

Methyltransferase

PPT:

Phosphinothricin

qRT-PCR:

Real-time quantitative PCR

RACE:

Rapid amplification of cDNA ends

ROS:

Reactive oxygen species

SAM:

S-adenosyl-methionine

SOD:

Superoxide dismutase

References

  • Alia, Saradhi PP, Mohanty P (1991) Proline enhances primary photochemical activities in isolated thylakoid membranes of Brassica juncea by arresting photoinhibitory damage. Biochem Biophys Res Commun 181:1238–1244

  • Alia, Saradhi PP, Mohanty P (1997) Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J Photochem Photobiol 38:253–257

  • Alia, Mohanty P, Matysik J (2001) Effect of proline on the production of singlet oxygen. Amino Acids 21:195–200

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:73–399

    Article  Google Scholar 

  • Chen HJ, Su CT, Lin CH, Huang GJ, Lin YH (2010) Expression of sweet potato cysteine protease SPCP2 altered developmental characteristics and stress responses in transgenic Arabidopsis plants. J Plant Physiol 167:838–847

    Article  CAS  PubMed  Google Scholar 

  • Cutler SR, Rodriguez PL, Finkelstein RR, Abrams SR (2010) Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol 61:651–679

    Article  CAS  PubMed  Google Scholar 

  • De Ronde JA, Spreeth MH, Cress WA (2000) Effect of antisense L-Δ1-pyrroline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Regul 32:13–26

    Article  Google Scholar 

  • De Ronde JA, Cress WA, Krüger GHJ, Strasser RJ, Van Staden J (2004) Photosynthetic response of transgenic soybean plants, containing an Arabidopsis P5CR gene, during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    Article  CAS  Google Scholar 

  • Deng XM, Hu W, Wei SY, Zhou SY, Zhang F, Han JP, Chen LH, Li Y, Feng JL, Fang B, Luo QC, Li SS, Liu YY, Yang GX, He GY (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS ONE 8:e69881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fan WJ, Zhang M, Zhang HX, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweetpotato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS ONE 7:e37344

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fernández-Falcón M, Hernández M, Alvarez CE, Borges AA (2006) Variation in nutrition along time and relative chlorophyll content of Leucospermum cordifolium cv. ‘High Gold’, and their relationship with chlorotic sypmptoms. Sci Hortic 107:373–379

    Article  Google Scholar 

  • Fuentes S, Pires N, Østergaard L (2010) A clade in the QUASIMODO2 family evolved with vascular plants and supports a role for cell wall composition in adaptation to environmental changes. Plant Mol Biol 73:605–615

    Article  CAS  PubMed  Google Scholar 

  • Gao S, Yuan L, Zhai H, Liu CL, He SZ, Liu QC (2011) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell, Tissue Organ Cult 107:205–213

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    Article  CAS  Google Scholar 

  • He SZ, Han YF, Wang YP, Zhai H, Liu QC (2009) In vitro selection and identification of sweetpotato (Ipomoea batatas (L.) Lam.) plants tolerant to NaCl. Plant Cell, Tissue Organ Cult 96:69–74

    Article  CAS  Google Scholar 

  • Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1–39

    Google Scholar 

  • Huang P, Ju HW, Min JH, Zhang X, Kim SH, Yang KY, Kim CS (2013) Overexpression of L-type lectin-like protein kinase 1 confers pathogen resistance and regulates salinity response in Arabidopsis thaliana. Plant Sci 203–204:98–106

    Article  PubMed  Google Scholar 

  • Joshi R, Ramanarao MV, Lee S, Kato N, Baisakh N (2014) Ectopic expression of ADP ribosylation factor 1 (SaARF1) from smooth cordgrass (Spartina alterniflora Loisel) confers drought and salt tolerance in transgenic rice and Arabidopsis. Plant Cell, Tissue Organ Cult 117:17–30

    Article  CAS  Google Scholar 

  • Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013a) Cloning and characterization of an orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem 70:445–454

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013b) Down-regulation of the lycopene ϵ-cyclase gene increases carotenoid synthesis via the β-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plant 147:432–442

    Article  CAS  PubMed  Google Scholar 

  • Koca H, Ozdemir F, Turkan I (2006) Effect of salt stress on lipid peroxidation and superoxide dismutase and peroxidase activities of Lycopersicon esculentum and L. pennellii. Biol Plant 50:745–748

    Article  CAS  Google Scholar 

  • Krupková E, Immerzeel P, Pauly M, Schmülling T (2007) The TUMOROUS SHOOT DEVELOP-MENT2 gene of Arabidopsis encoding a putative methyltransferase is required for cell adhesion and co-ordinated plant development. Plant J 50:735–750

    Article  PubMed  Google Scholar 

  • Letunic I, Goodstadt L, Dickens NJ, Doerks T, Schultz J, Mott R, Ciccarelli F, Copley RR, Ponting CP, Bork P (2002) Recent improvements to the SMART domain-based sequence annotation resource. Nucleic Acids Res 30:242–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu QC, Zhai H, Wang Y, Zhang DP (2001) Efficient plant regeneration from embryogenic suspension cultures of sweetpotato. In Vitro Cell Dev Biol Plant 37:564–567

    Article  Google Scholar 

  • Liu DG, He SZ, Zhai H, Wang LJ, Zhao Y, Wang B, Li RJ, Liu QC (2014a) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell, Tissue Organ Cult 117:1–16

    Article  Google Scholar 

  • Liu DG, Wang LJ, Liu CL, Song XJ, He SZ, Zhai H, Liu QC (2014b) An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS ONE 9(4):e93935

    Article  PubMed Central  PubMed  Google Scholar 

  • Martin JL, McMillan FM (2002) SAM (dependent) I AM: the S-adenosylmethionine-dependent methyltransferase fold. Curr Opin Struct Biol 12:783–793

    Article  CAS  PubMed  Google Scholar 

  • Mayoral JG, Nouzova M, Yoshiyama M, Shinoda T, Hernandez-Martinez S, Dolghih E, Turjanski AG, Roitberg AE, Priestap H, Perez M, Mackenzie L, Li Y, Noriega FG (2009) Molecular and functional characterization of a juvenile hormone acid methyltransferase expressed in the corpora allata of mosquitoes. Insect Biochem Mol Biol 39:31–37

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miao YS, Li HY, Shen JB, Wang JQ, Jiang LW (2011) QUASIMODO 3 (QUA3) is a putative homogalacturonan methyltransferase regulating cell wall biosynthesis in Arabidopsis suspension-cultured cells. J Exp Bot 62:5063–5078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133:481–489

    Article  CAS  PubMed  Google Scholar 

  • Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, Cell Environ 33:453–467

    Article  CAS  Google Scholar 

  • Mishra MK, Chaturvedi PC, Singh R, Singh G, Sharma LK, Pandey V, Kumari N, Misra P (2013) Overexpression of WsSGTL1 gene of Withania somnifera enhances salt tolerance, heat tolerance and cold acclimation ability in transgenic Arabidopsis plants. PLoS ONE 8:e63064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mouille G, Ralet MC, Cavelier C, Eland C, Effroy D, Hématy K, McCartney L, Truong HN, Gaudon V, Thibault JF, Marchant A, Höfte H (2007) Homogalacturonan synthesis in Arabidopsis thaliana requires a Golgi-localized protein with a putative methyltransferase domain. Plant J 50:605–614

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Park SC, Song WS, Yoon S (2014) Structural analysis of a putative SAM-dependent methyltransferase, YtqB, from Bacillus subtilis. Biochem Biophys Res Commun 446:921–926

    Article  CAS  PubMed  Google Scholar 

  • Peng XJ, Zhang LX, Zhang LX, Liu ZJ, Cheng LQ, Yang Y, Shen SH, Chen SY, Liu GS (2013) The transcriptional factor LcDREB2 cooperates with LcSAMDC2 to contribute to salt tolerance in Leymus chinensis. Plant Cell, Tissue Organ Cult 113:245–256

    Article  CAS  Google Scholar 

  • RoyChoudhury A, Roy C, Sengupta DN (2007) Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Rep 26:1839–1859

    Article  CAS  PubMed  Google Scholar 

  • Sahr T, Adam T, Fizames C, Maurel C, Santoni V (2010) O-carboxyl-and N-methyltransferases active on plant aquaporins. Plant Cell Physiol 51:2092–2104

    Article  CAS  PubMed  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3:1101–1108

    Article  CAS  PubMed  Google Scholar 

  • Schubert HL, Blumenthal RM, Cheng XD (2003) Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28:329–335

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Singh S, Singh C, Tripathi AK (2014) A SAM-dependent methyltransferase cotranscribed with arsenate reductase alters resistance to peptidyl transferase center-binding antibiotics in Azospirillum brasilense Sp7. Appl Microbiol Biotechnol 98:4625–4636

    Article  CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    Article  CAS  Google Scholar 

  • Struck AW, Thompson ML, Wong LS, Micklefield J (2012) S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications. ChemBioChem 13:2642–2655

    Article  CAS  PubMed  Google Scholar 

  • Surekha C, Kumari KN, Aruna LV, Suneetha G, Arundhati A, Kishor PBK (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell, Tissue Organ Cult 116:27–36

    Article  CAS  Google Scholar 

  • Takahashi S, Murata N (2008) How do environmental stresses accelerate photoinhibition? Trends Plant Sci 13:178–182

    Article  CAS  PubMed  Google Scholar 

  • Wang LJ, He SZ, Zhai H, Liu DG, Wang YN, Liu QC (2013a) Molecular cloning and fanctional characterization of a salt tolerance-associated gene IbNFU1 from sweetpotato. J Integr Agric 12:27–35

    Article  Google Scholar 

  • Wang TZ, Zhang JL, Tian QY, Zhao MG, Zhang WH (2013b) A Medicago truncatula EF-Hand family gene, MtCaMP1, is involved in drought and salt stress tolerance. PLoS ONE 8:e58952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wyn Jones RG, Storey R (1978) Salt stress and comparative physiology in the Gramineae. II. Glycine betaine and proline accumulation in two salt- and water- stressed barley cultivars. Aust J Plant Physiol 5:817–829

    Article  CAS  Google Scholar 

  • Yang A, Dai XY, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63:2541–2556

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang L, Han HJ, Liu MM, Zuo ZJ, Zhou KQ, Lü JC, Zhu YR, Bai YL, Wang Y (2013) Overexpression of the Arabidopsis photorespiratory pathway gene, serine: glyoxylate aminotransferase (AtAGT1), leads to salt stress tolerance in transgenic duckweed (Lemna minor). Plant Cell, Tissue Organ Cult 113:407–416

    Article  CAS  Google Scholar 

  • Zang N, Zhai H, Gao S, Chen W, He SZ, Liu QC (2009) Efficient production of transgenic plants using the bar gene for herbicide resistance in sweetpotato. Sci Hortic 122:649–653

    Article  CAS  Google Scholar 

  • Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012a) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67

    Article  PubMed  Google Scholar 

  • Zhang H, Liu YX, Xu Y, Chapman S, Love AJ, Xia T (2012b) A newly isolated Na+/H+ antiporter gene, DmNHX1, confers salt tolerance when expressed transiently in Nicotiana benthamiana or stably in Arabidopsis thaliana. Plant Cell, Tissue Organ Cult 110:189–200

    Article  CAS  Google Scholar 

  • Zhao Q, Zhang H, Wang T, Chen SX, Dai SJ (2013) Proteomics-based investigation of salt-responsive mechanisms in plant roots. J Proteom 82:230–253

    Article  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zsigmond L, Szepesi Á, Tari I, Rigó G, Király A, Szabados L (2012) Overexpression of the mitochondrial PPR40 gene improves salt tolerance in Arabidopsis. Plant Sci 182:87–93

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael Portereiko, Ceres, Inc. USA, and Dr. Daniel Q. Tong, University of Maryland, USA, for English improvement. We also thank Prof. Wang T, State Key Laboratory of Agrobiotechnology, Beijing, China, for providing Strain EHA 105. This work was supported by the National Natural Science Foundation of China (31371680) and China Agriculture Research System (CARS-11, Sweetpotato).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingchang Liu.

Additional information

Degao Liu, Shaozhen He and Xuejin Song have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4814 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., He, S., Song, X. et al. IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell Tiss Organ Cult 120, 701–715 (2015). https://doi.org/10.1007/s11240-014-0638-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0638-6

Keywords

Navigation