Skip to main content
Log in

A new and efficient micropropagation method and its breeding applications in Asparagus genera

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Cultivated asparagus (Asparagus officinalis L.) is an economically important plant worldwide. “Morado de Huetor” is a Spanish autochthonous landrace characterized by their longevity, organoleptic characteristics, differential biocompound content and high heterozygosity, resulting in heterogeneous plantations with limited productivity. Consequently, this landrace suffers high risk of extinction due the lack of productivity. The preservation of the genetic pool of asparagus requires the development of a reliable micropropagation method. A new, rapid and efficient method of micropropagation for asparagus using rhizome bud explants has been developed. The rate of disinfection reached 90 %, and the system for shoot development and rooting on Asparagus Rhizome Bud Medium took place in one step. Recovery of the full plantlets ranged between 65 and 90 %. The plantlets were ready to be transplanted by 8 weeks, with a successful acclimatization of 80 % in average. The micropropagated plants were normal in phenotype, and the genetic stability was verified using molecular markers expressed sequence tags–microsatellites or simple sequence repeats and Flow Cytometry and certified as true-to-type. Applying this method, an in vitro breeder collection of “Morado de Huetor” landrace, A. officinalis, wild asparagus relatives and hybrid progenies has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AFLP:

Amplified fragment length polymorphism

ANC:

Ancymidol

ARBM:

Asparagus rhizome bud medium

DAM:

Desjardins Asparagus medium

EDDHA:

Ethylenediamine-N,N′-bis(2-hydroxyphenylacetic acid)

EST:

Expressed sequence tags

FCM:

Flow cytometry

KIN:

Kinetin

MS:

Murashige and Skoog medium (1962)

NAA:

1-Naphthalene-acetic acid

RAPD:

Random amplified polymorphic DNA

SSRs:

Microsatellites or simple sequence repeats

2iP:

2-Isopentenil adenine

BA:

6-Benziladenine

IBA:

Indole-3-butyric acid

IAA:

Indole-3-acetic acid

bp:

Base pairs

References

  • Araki H, Shimazaki H, Hirata Y, Oridate T, Harada T, Yakuwa T (1992) Chromosome number variation of callus cells and regenerated plants in Asparagus officinalis L. Plant Tis Cult Lett 9:169–175

    Article  Google Scholar 

  • Bairu MW, Aremu AO, Van Staden J (2011) Somaclonal variation in plants: causes and detection methods. Plant Growth Regul 63:147–173

    Article  CAS  Google Scholar 

  • Cao H, Biswas MK, Lü Y, Amar MH, Tong Z, Xu Q, Xu H, Guo W, Deng X (2011) Doubled haploid callus lines of Valencia sweet orange recovered from anther culture. Plant Cell Tiss Organ Cult 104:415–423

    Article  Google Scholar 

  • Caruso M, Federici CT, Roose ML (2008) EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breeding 21:195–204. doi:10.1007/s11032-007-9120-z

    Article  CAS  Google Scholar 

  • Chin CK (1982) Promotion of shoot and root formation in asparagus in vitro by ancymidol. HortScience 17:590–591

    CAS  Google Scholar 

  • Christensen B, Sriskandarajh S, Serek M, Müller R (2008) In vitro culture of Hibiscus rosa-sinensis L.: influence of iron, calcium and BAP on establishment and multiplication. Plant Cell Tiss Organ Cult 93:151–161

    Article  CAS  Google Scholar 

  • Desjardins Y (1992) Micropropagation of Asparagus (Asparagus officinalis L.). In: Bajaj YPS (ed) Biotechnology in agriculture and forestry. Vol. 19: high-tech and micropropagation III. Springer, Berlin-Heidelberg, pp 26–41

    Google Scholar 

  • Desjardins Y, Tiessen H, Harney PM (1987) The effect of sucrose and ancymidol on the in vitro rooting of nodal sections of asparagus. Hort Science 22:131–133

    CAS  Google Scholar 

  • Escobedo-GraciaMedrano RM, Maldonado-Borges JI, Burgos-Tan MJ, Valadez-González N, Ku-Cauich JR (2014) Using flow cytometry and cytological analyses to assess the genetic stability of somatic embryo-derived plantlets from embryogenic Musa acuminata Colla (AA) P. malaccensis cell suspension cultures. Plant Cell Tiss Organ Cult 116:175–185

    Article  CAS  Google Scholar 

  • Galbraight DW, Harkins KR, Maddox JM, Ayres NM, Sharma DP, Firoozabady E (1983) Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220:1049–1051

    Article  Google Scholar 

  • Galbraight DW, Lambert G, Macas J, Dolezel J (2002) Analysis of nuclear DNA content and ploidy in higher plants. In Robinson J, Darzynkiewicz Z, Dean P, Hibbs A, Orfao A, Rabinovitch P, Wheeless L (ed) Current Protocols in Cytometry. John Wiley and Sons: New York, pp 7.6.1–7.6.22. doi: 10.1002/0471142956.cy0706s02

  • Gao DY, Vallejo V, He B, Gai YC, Sun LH (2009) Detection of DNA changes in somaclonal mutants of rice using SSR markers and transposon display. Plant Cell Tiss Organ Cult 98:187–196

    Article  CAS  Google Scholar 

  • Geoffriau E, Denoue D, Remeau C (1992) Assessment of genetic variation among asparagus (Asparagus officinalis L.) populations and cultivars: agromorphological and isozymic data. Euphytica 61:169–179

    Article  CAS  Google Scholar 

  • Hasegawa PM, Murashige T, Takatori FH (1973) Propagation of asparagus through shoot apex culture II. Light and temperature requirements, transplantability of plants, and cyto-histological characteristics. J Am Soc Hort Sci 98:143–148

    Google Scholar 

  • Idris TIM, Ujool SAM, Mahdi EM (2010) Disinfection potential of some chemicals and local herbs and proliferation studies on the in vitro culture of ginger (Zingiber officinale Rosc). J Sci Tech 11:34–39

    Google Scholar 

  • Knaflewsky M (1996) Genealogy of asparagus cultivars. In: Nichols M, Swain D (ed). Proceedings VIII Int Asparagus Symp. pp 87–91

  • Kohmura H, Ito T, Shigemoto N, Imoto M, Yoshikawa H (1996) Comparison of growth, yield, and flowering characteristics between micropropagated asparagus clones derived by somatic embryogenesis and seed-propagated progenies. J Jpn Soc Hort Sci 65:311–319

    Article  Google Scholar 

  • Kunitake H, Nakashima T, Mori K, Tanaka M (1998) Somaclonal and chromosomal effects of genotype, ploidy and culture duration in Asparagus officinalis L. Euphytica 102:309–316

    Article  Google Scholar 

  • Limanton-Grevet A, Sotta B, Brown S, Jullien M (2000) Analysis of habituated embryogenic lines in Asparagus officinalis L.: growth characteristics, hormone content and Ploidy level of calli and regenerated plants. Plant Sci 160:15–26

    Article  CAS  PubMed  Google Scholar 

  • Littell RC, Stroup WW, Freund R (2002) SAS for linear models, 4th edn. SAS Institute Inc, Cary

    Google Scholar 

  • Liu F, Huang LL, Li YL, Reinhoud P, Jongsma MA, Wang CY (2011) Shoot organogenesis in leaf explants of Hydrangea macrophylla ‘Hyd1’ and assessing genetic stability of regenerants using ISSR markers. Plant Cell Tiss Organ Cult 104:111–117

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Millan T, Gil J (2006) Ploidic and molecular analysis of ‘Morado de Huetor’ Asparagus (Asparagus officinalis L.) population: a Spanish tetraploid landrace. Genet Resour Crop Ev 53:729–736. doi:10.1007/s10722-004-4717-0

    Article  CAS  Google Scholar 

  • Moreno R, Espejo JA, Cabrera A, Gil J (2008a) Origin of tetraploid cultivated asparagus landraces inferred from nrDNA ITS polymorphisms. Ann Appl Biol 153:233–241. doi:10.1111/j.1744-348.2008.00254.x

    CAS  Google Scholar 

  • Moreno R, Espejo JA, Moreno MT, Gil J (2008b) Collection and conservation of ‘Morado de Huetor’ Spanish tetraploid asparagus landrace. Genet Resour Crop Ev 55:773–777. doi:10.1007/s10722-008-9358-2

    Article  Google Scholar 

  • Moreno R, Carmona E, Encina CL, Rubio J, Gil J (2010a) Aplicación de marcadores microsatélites en la mejora del espárrago. Actas Hortic 55:221–222

    Google Scholar 

  • Moreno R, Espejo JA, Gil J (2010b) Development of triploid hybrids in asparagus breeding employing a tetraploid landrace. Euphytica 173:369–375. doi:10.1007/s10681-009-0103-5

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murashige T, Shabde MN, Hasegawa PM, Takatori FH, Jones JB (1972) Propagation of asparagus through shoot apex culture. J Am Soc Hort Sci 97:158–161

    Google Scholar 

  • Ochatt SJ, Patat-Ochatt EM, Moessner A (2011) Ploidy level determination within the context of in vitro breeding. Plant Cell Tiss Organ Cult 104:329–341

    Article  Google Scholar 

  • Ochatt S, Jacas L, Patat-Ochatt EM, Djenanne S (2013) Flow cytometric analysis and molecular characterization of Agrobacterium tumefaciens-mediated transformants of Medicago truncatula. Plant Cell Tiss Organ Cult 113:237–244

    Article  CAS  Google Scholar 

  • Odake Y, Udagawa A, Saga H, Mii M (1993) Somatic embryogenesis of tetraploid plants from internodal segments of a diploid cultivar of Asparagus officinalis L. grown in liquid culture. Plant Sci 94:173–177

    Article  CAS  Google Scholar 

  • Pontaroli AC, Camadro EL (2005) Somaclonal variation in Asparagus officinalis L. plants regenerated by organogenesis from long-term callus cultures. Genet Mol Biol 28:423–430

    Article  Google Scholar 

  • Raimondi JP, Camadro EL, Masuelli RW (2001) Assessment of somaclonal variation in asparagus by RAPD fingerprinting and cytogenetic analyses. Sci Hortic 90:19–29

    Article  Google Scholar 

  • Shiga I, Uno Y, Kanechi M, Inagaki N (2009) Identification of polyploidy of in vitro anther-derived shoots of Asparagus officinalis L. by flow cytometric analysis and measurement of stomatal length. J Japan Soc Hort SCI 78(1):103–108

    Article  Google Scholar 

  • Torres AM, Weeden NF, Martin A (1993) Linkage among isozyme, RFLP and RAPD markers in Vicia Faba. Theor Appl Genet 85:935–945

    Article  Google Scholar 

  • Vujovic T, Cerovic R, Ruzic D (2012) Ploidy level stability of adventitious shoots of sour cherry ‘Čacanski Rubin’ and Gisela 5 cherry rootstock. Plant Cell Tiss Organ Cult 111:323–333

    Article  Google Scholar 

  • Yang HJ, Clore WJ (1973) Rapid propagation of asparagus through lateral bud culture. HortScience 8:141–143

    Google Scholar 

  • Yang HJ, Clore WJ (1974) Development of complete plantlets from moderately vigorous shoot of stocks plants of asparagus in vitro. HortScience 9:138–139

    Google Scholar 

  • Yukimasa H, Shigeru T, Rie M, Atsuko K (1990) Patent: Method of multiplying plant belonging to the genus asparagus. Patent No: EP0375218. Assignee: Mitsui Petrochemical Ind (JP). Application No: EP19890312806 19891208

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. M. G. Padilla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carmona-Martín, E., Regalado, J.J., Padilla, I.M.G. et al. A new and efficient micropropagation method and its breeding applications in Asparagus genera. Plant Cell Tiss Organ Cult 119, 479–488 (2014). https://doi.org/10.1007/s11240-014-0548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-014-0548-7

Keywords

Navigation