Skip to main content
Log in

DNA methylation of Quercus robur L. plumules following cryo-pretreatment and cryopreservation

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Pedunculate oak (Quercus robur) is an ecologically and economically important forest tree species which produces seeds that are classified as recalcitrant. Thus, cryopreservation of seed meristems is a method for long-term preservation of this germplasm in gene banks. During cryopreservation, many factors, such as desiccation, cryoprotection and cooling/rewarming, can induce stress in the frozen meristems. In this study, in vitro survival and the global DNA methylation level of plumules after cryoprotection, desiccation and cryostorage was evaluated. Results indicated that both desiccation and storage in liquid nitrogen have negligible influence on DNA methylation status of Q. robur plumules. These findings support the cryopreservation of plumules as an appropriate method for conservation of Q. robur germplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

MC:

Moisture content

WC:

Water content

m5C:

5-Methylcytosine

C:

Cytosine

T:

Thymine

LN:

Liquid nitrogen

References

  • Barciszewska MZ, Barciszewska AM, Rattan SIS (2007) TLC-based detection of methylated cytosine: application to aging epigenetics. Biogerontology 8:673–678

    Article  PubMed  CAS  Google Scholar 

  • Bestor TH, Hellewell SB, Ingram VM (1984) Differentiation of two mouse cell lines is associated with hypomethylation of their genomes. Mol Cell Biol 4:1800–1806

    PubMed Central  PubMed  CAS  Google Scholar 

  • Blomme R, Degeyter L (1986) The storage of seeds of Quercus robur. Verbondsnieuws voor de Belgische Sierteelt 30:771–777

    Google Scholar 

  • Bronisz A, Bijak S, Bronisz K, Zasada M (2012) Climate influence on radial increment of oak (Quercus sp.) in central Poland. Geochronometria 39:276–284

    Article  Google Scholar 

  • Businge E, Bygdell J, Wingsle G, Moritz T, Egertsdotter U (2013) The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol Plant. doi:10.1111/ppl.12039

    PubMed  Google Scholar 

  • Causevic A, Delaunay A, Ounnar S, Righezza M, Delmotte F, Brignolas F, Hagège D, Maury S (2005) DNA methylation and demethylation treatments modify phenotype and cell wall differentiation state in sugarbeet cell lines. Plant Physiol Biochem 43:681–691

    Article  PubMed  CAS  Google Scholar 

  • Channuntapipat C, Sedgley M, Collins G (2003) Changes in methylation and structure of DNA from almond tissues during in vitro culture and cryopreservation. J Am Soc Hortic Sci 218:890–897

    Google Scholar 

  • Chmielarz P, Michalak M, Palucka M, Wasilenczyk U (2011) Successful cryopreservation of Quercus robur plumules. Plant Cell Rep 30:1405–1414

    Article  PubMed  CAS  Google Scholar 

  • Dahl C, Guldberg P (2003) DNA methylation analysis techniques. Biogerontology 4:233–250

    Article  PubMed  CAS  Google Scholar 

  • Gosling PG (1989) The effect of drying Quercus robur acorns to different moisture contents, followed by storage, either with or without imbibition. Forestry 62:41–50

    Article  Google Scholar 

  • Guzy-Wróbelska J, Filek M, Kaliciak A, Szarejko I, Machackova I, Krekule J, Barciszewska M (2013) Vernalization and photoperiod-related changes in the DNA methylation state in winter and spring rapeseed. Acta Physiol Plant 35:817–827

    Article  CAS  Google Scholar 

  • Hao YJ, Liu QL, Deng XX (2001) Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43:46–53

    Article  PubMed  CAS  Google Scholar 

  • Hao YJ, You CX, Deng XX (2002) Analysis of ploidy and the patterns of amplified fragment length polymorphism and methylation sensitive amplified polymorphism in strawberry plants recovered from cryopreservation. CryoLetters 23:37–46

    PubMed  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Heringer AS, Steinmacher DA, Fraga HPF, Vieira LN, Ree JF, Guerra MP (2013) Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tiss Org. doi:10.1007/s11240-012-0217-7

    Google Scholar 

  • Hori M, Yonei S, Sugiyama H, Kino K, Yamamoto K, Zhang QM (2003) Identification of high excision capacity for 5-hydroxymethyluracil mispaired with guanine in DNA of Escherichia coli MutM, Nei and Nth DNA glycosylases. Nucleic Acids Res 31:1191–1196

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Johnston JW, Benson EE, Harding K (2009) Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol Bioch 47:123–134

    Article  CAS  Google Scholar 

  • Kachroo P, Venugopal SC, Navarre DA, Lapchyk L, Kachroo A (2005) Role of salicylic acid and fatty acid desaturation pathways in ssi2-mediated signaling. Plant Physiol 139:1717–1735

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaczmarczyk A, Funnekotter B, Menon A, Phang PY, Al-Hanbali A, Bunn E, Mancera RL (2012) Current issues in plant cryopreservation. In: Katkov II (ed) Current frontiers in cryobiology, InTech, pp 417–438

  • Kaity A, Ashmore SE, Drew RA, Dulloo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Kaity A, Drew RA, Ashmore SE (2013) Genetic and epigenetic integrity assessment of acclimatized papaya plants regenerated directly from shoot-tips following short- and long-term cryopreservation. Plant Cell Tiss Organ Cult 112:75–86

    Article  CAS  Google Scholar 

  • Kamiya H, Tsuchiya H, Karino N, Ueno Y, Matsuda A, Harashima H (2002) Mutagenicity of 5-formylcytosine, an oxidation product of 5-methylcytosine, in DNA in mammalian cells. J Biochem 132:551–555

    Article  PubMed  CAS  Google Scholar 

  • Kaviani B (2011) Conservation of plant genetic resources by cryopreservation. Aust J Crop Sci 5:778–800

    Google Scholar 

  • Kuchino Y, Beier H, Akita N, Nishimura S (1987) Natural UAG suppressor glutamine tRNA is elevated in mouse cells infected with moloney murine leukemia virus. Proc Natl Acad Sci USA 84:2668–2672

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Law JA, Jacobsen SE (2009) Dynamic DNA methylation. Science 323:1568–1569

    Article  PubMed  CAS  Google Scholar 

  • Lister R, O`Mallely RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lloyd G, McCown BH (1981) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Lukens LN, Zhan S (2007) The plant genome’s methylation status and response to stress: implications for plant improvement. Curr Opin Plant Biol 10:317–322

    Article  PubMed  CAS  Google Scholar 

  • Michalak M, Barciszewska MZ, Barciszewski J, Plitta BP, Chmielarz P (2013) Global changes in DNA methylation in seeds and seedlings of Pyrus communis after seed desiccation and storage. PLoS ONE 8:e70693

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163

    Article  PubMed  CAS  Google Scholar 

  • Peredo EL, Arroyo-García R, Reed BM, Revilla MA (2008) Genetic and epigenetic stability of cryopreserved and cold-stored hops (Humulus lupulus L.). Cryobiology 57:234–241

    Article  PubMed  CAS  Google Scholar 

  • Plitta B, Adamska E, Giel-Pietraszuk M, Fedoruk-Wyszomirska A, Naskręt-Barciszewska M, Markiewicz WT, Barciszewski J (2012) New cytosine derivatives as inhibitors of DNA methylation. Eur J Med Chem 55:243–254

    Article  PubMed  CAS  Google Scholar 

  • Roberts EH (1973) Predicting the storage life of seeds. Seed Sci Technol 1:499–514

    Google Scholar 

  • Schmitt F, Oakeley EJ, Jost JP (1997) Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants. J Biol Chem 272:1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Jha AB, Dubey RS, Pessarakli M (2012) Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. doi:10.1155/2012/217037

    Google Scholar 

  • Shen L, Waterland RA (2007) Methods of DNA methylation analysis. Curr Opin Clin Nutr Metab Care 10:576–581

    Article  PubMed  CAS  Google Scholar 

  • Sisunandar, Rival A, Turquay P, Samosir Y, Adkins SW (2010) Cryopreservation of coconut (Cocos nucifera L.) zygotic embryos does not induce morphological, cytological or molecular changes in recovered seedlings. Planta 232:435–447

  • Stein J, Binion D, Acciavatti R (2003) Field guide to native oak species of eastern North America. United States Department of Agriculture, FHTET-2003-01

  • Thomas M, Blank R, Hartmann G (2002) Abiotic and biotic factors and their interactions as causes of oak decline in Central Europe. Forest Pathol 32:277–307

    Article  Google Scholar 

  • Uthup TK, Ravindran M, Bini K, Thakurdas S (2011) Divergent DNA methylation patterns associated with abiotic stress in Hevea brasiliensis. Mol Plant 4:996–1013

    Article  PubMed  CAS  Google Scholar 

  • Valledor L, Hasbun R, Meijon M, Rodriguez JL, Santamaria E, Viejo M, Berdasco M, Feito I, Fraga MF, Canal MJ, Rodriguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Org Cult 91:75–86

    Article  CAS  Google Scholar 

  • Walters C, Wesley-Smith J, Crane J, Hill LM, Chmielarz P, Pammenter NW, Berjak P (2008) Cryopreservation of recalcitrant (i.e. desiccation-sensitive) seeds. In: Reed BM (ed) Plant cryopreservation: a pracital guide. Springer, NY, pp 465–484

    Chapter  Google Scholar 

  • Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of recalcitrant seeds. Science 339:915–916

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, He Y (2008) Effect of cryopreservation on the development and DNA methylation pattern of Arabidopsis thaliana. Life Sci J 6:55–60

    Google Scholar 

  • Zhang M, Kimatu JN, Xu K, Liu B (2010) DNA cytosine methylation in plant development. J Genet Genomics 36:1–12

    Article  Google Scholar 

  • Zhu J, Kapoor A, Sridhar VV, Agius F, Zhu JK (2007) The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in arabidopsis. Curr Biol 17:54–59

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mrs. Elżbieta Drzewiecka-Pieniężna, and Mrs. Magdalena Sobczak for providing technical assistance during the experiments in Kórnik. This work was partly supported by a grant from the National Science Center, Poland, Grant No. N N309 072036.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beata P. Plitta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Plitta, B.P., Michalak, M., Naskręt-Barciszewska, M.Z. et al. DNA methylation of Quercus robur L. plumules following cryo-pretreatment and cryopreservation. Plant Cell Tiss Organ Cult 117, 31–37 (2014). https://doi.org/10.1007/s11240-013-0417-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0417-9

Keywords

Navigation