Skip to main content
Log in

Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In vitro propagated Artemisia annua plantlets were exposed to low dose (2.8 W m−2) of UV-B (280–315 nm) radiation for different short-term (1, 2, 3 and 4 h) durations that resulted in 103 and 100 % enhanced artemisinin and flavonoid yield respectively after 3 h of UV-B irradiation. UV-B irradiation resulted in reduced chlorophyll a, b and carotenoids while the concentrations of UV-B-absorbing anthocyanins and phenolics were induced. Under UV-B radiation, superoxide radical formation increased in a time dependent manner and was maximum at 4 h. This lead to differential responses of enzymatic antioxidants (superoxide dismutase, catalase, peroxidases and glutathione reductase) to withstand the UV-B radiation-induced reactive oxygen species burst. The transcript analysis through RT-PCR revealed the significant up-regulation of HMGR, DXR, IPPi, FPS, ADS, CYP71AV1 and RED1 gene transcripts leading to higher artemisinin accumulation. Differential expression of stress regulated genes (AOX1a, NDB2, UPOX, PAL, LOX) helped the plant towards better adaptability at least up to 3 h UV-B irradiation period. Simultaneous clustering of genes and UV-B treatments using complete linkage and a euclidean distance matrix revealed that 3 h irradiation period is optimum for high artemisinin yield with better tolerance. Histological studies revealed the larger trichome size in UV-B treated plants as compared to untreated plants. The present study conclude that short term UV-B treatment to in vitro raised A. annua may be a safe approach for continuous supply of high artemisinin producing plantlets with simultaneous action of stress- regulated genes to keep the plant healthy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

NAA:

1-Nephthaleneacetic acid

SOD:

Superoxide dismutase

POX:

Peroxidase

GR:

Glutathione reductase

ROS:

Reactive oxygen species

HMGR:

3-Hydroxyl-3-methyglutaryl CoA reductase

DXS:

1-Deoxy-d-xylulose-5-phosphate synthase

DXR:

1-Deoxy-d-xylulose-5-phosphate reductoisomerase

IPPi:

Isopentenyl pyrophosphate isomerase

FPS:

Fernasyl diphoaphate synthase

GGPRS:

Geranylgeranyl pyrophosphate synthase

ADS:

Amorpha-4,11-diene synthase

CYP71AV1:

Cytochrome P450 dependent monooxygenase/hydroxylase

RED1:

Dihydroartemisinic aldehyde reductase

GAS:

Germacrene A synthase

ECS:

8-Epicedrol synthase

QHS:

β-Caryophyllene synthase

BFS:

β-Farnesene synthase

AOX1a:

Alternative oxidase 1a

NDB2:

NAD(P)H dehydrogenase B2

UPOX:

Gene at locus At2g21640 (up-regulated under oxidative stress)

FNR:

Ferredoxin NADP reductase

PAL:

Phenylalanine ammonia lyase

LOX:

Lipoxygenase

Chl:

Chlorophyll

T.S.:

Transverse section

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Aluru MR, Rodermel SR (2004) Control of chloroplast redox by the IMMUTANS terminal oxidase. Physiol Plant 120:4–11

    Article  CAS  PubMed  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadhams LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. Proc Natl Acad Sci USA 103:10509–10513

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Ann Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Britton C, Mehley AC (1955) Assay of catalase and peroxidises. In: Colowick SP, Kaplan NO (eds) Methods in Enzymology, vol 2. Academic Press, New York, pp 764–775

    Google Scholar 

  • Cai Y, Jiaa JW, Crockb J, Linc ZX, Chena XY, Croteau R (2002) A cDNA clone for b-caryophyllene synthase from Artemisia annua. Phytochemistry 61:523–529

    Article  CAS  PubMed  Google Scholar 

  • Chang C, Yang M, Wen H, Chern J (2002) Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Analysis 10:178–182

    CAS  Google Scholar 

  • Chen DH, Ye HC, Li GF (2000) Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation. Plant Sci 155:179–185

    Article  CAS  PubMed  Google Scholar 

  • Clifton R, Lister R, Parker KL, Sappl PG, Elhafez D, Millar AH, Day DA, Whelan J (2005) Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Mol Biol 58:193–212

    Article  CAS  PubMed  Google Scholar 

  • Clifton R, Millar AH, Whelan J (2006) Alternative oxidases in Arabidopsis: a comparative analysis of differential expression in the gene family provides new insights into function of nonphosphorylating bypasses. Biochim Biophys Acta 1757:730–741

    Article  CAS  PubMed  Google Scholar 

  • Corchete P, Bru R (2013) Proteome alterations monitored by DIGE analysis in Silybum marianum cell cultures elicited with methyl jasmonate and methyl B cyclodextrin. J Proteomics 85:99–108. doi:10.1016/j.jprot.2013.04.032

    Article  CAS  PubMed  Google Scholar 

  • Dai J, Mumper RJ (2010) Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules 15:7313–7352. doi:10.3390/molecules15107313

    Article  CAS  PubMed  Google Scholar 

  • Day N, Dondrop MA (2007) The management of patients with severe malaria. Am J Trop Med Hygiene l77:29–35

    Google Scholar 

  • Dubbs WE, Grimes HD (2000) The Mid-Pericarp Cell Layer in Soybean Pod Walls Is a Multicellular Compartment Enriched in Specific Lipoxygenase Isoforms1. Plant Physiol 123(4):1281–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Duke SO, Paul RN (1993) Development and fine structure of the glandular trichomes of Artemisia annua L. Int J Plant Sci 154:107–118

    Article  Google Scholar 

  • Durante M, Caretto S, Quarta A, De Paolis A, Nisi R, Mita G (2011) β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 90(6):1905–1913. doi:10.1007/s00253-011-3232-4

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer J (1984) Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Rodriguez E, Healey PL, Mehta I (eds) Biology and chemistry of plant trichomes. Plenum Press, New York, pp 113–132

    Chapter  Google Scholar 

  • Ferreira JF, Luthria DL, Sasaki T, Heyerick A (2010) Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules 15:3135–3170

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photoxidative stress in plants. Physiol Plant 92:696–717

    Article  CAS  Google Scholar 

  • Gao W, Zheng YF, Slusser JR, Heisler GM, Grnt RH, Xu JQ, He DL (2004) Effects of supplementary ultraviolet –B irradiance on maize yield and qualities: a field experiment. J Photochem Photobio 80:127–131

    Article  CAS  Google Scholar 

  • Harmel N, Almohamad R, Fauconnier ML et al (2007) Role of terpenes from aphid-infested potato on searching and oviposition behavior of the hoverfly predator Episyrphus balteatus. Insect Science 14:57–63

    Article  CAS  Google Scholar 

  • Heck DE, Vetrano AM, Mariano TM, Laskin JD (2003) UVB Light Stimulates Production of Reactive Oxygen Species: unexpected role for catalase. J Biol Chem 278(25):22432–22436. doi:10.1074/jbc.C300048200

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193(4):997–1008. doi:10.1111/j.1469-8137.2011.04001

    Article  CAS  PubMed  Google Scholar 

  • Imeh U, Khokhar S (2002) Distribution of conjugated and free phenols in fruits: antioxidant activity and cultivar variations. J Agric Food Chem 50:6301–6306

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yun EJ, Hossain MA, Lee H, Kim KH (2012) Global profiling of ultraviolet-induced metabolic disruption in Melissa officinalis by using gas chromatography-mass spectrometry. Anal Bioanal Chem 404:553–562

    Article  CAS  PubMed  Google Scholar 

  • Kranner I, Minibayeva FV, Beckett RP, Seal CE (2010) What is stress? Concepts, definitions and applications in seed science. New Phytol 188:655–673. doi:10.1111/j.1469-8137.2010.03461.x

    Article  CAS  PubMed  Google Scholar 

  • Krapp AR, Rodriguez RE, Poli HO, Paladini DH, Palatnik JF, Carrillo N (2002) The flavoenzyme ferredoxin(flavodoxin)-NADP(H) reductase modulates NADP(H) homeostasis during the soxRS response of Escherichia coli. J Bacteriol 184:1474–1480

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kumari R, Prasad MNV (2013) Medicinal Plant Active Compounds Produced by UV-B Exposure. Sustainable Agriculture Reviews 12:225–254. doi:10.1007/978-94-007-5961-9_8

    Article  Google Scholar 

  • Larson RA (1988) The antioxidants of higher plants. Phytochem 27:969–978

    Article  CAS  Google Scholar 

  • Lee BK, Park MR, Srinivas B, Chun JC, Kwon I-S, Chung I-M, Yun SJ (2003) Induction of phenylalanine ammonia-lyase gene expression by paraquat and stress-related hormones in Rehmannia glutinosa. Mol Cells 16:34–39

    CAS  PubMed  Google Scholar 

  • Li J, Ou-Lee TM, Raba R, Amundson RG, Last RL (1993) Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation. Plant Cell 5(2):171–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lois R, Bieza K (2001) An Arabidopsis Mutant Tolerant to Lethal Ultraviolet-B Levels Shows Constitutively Elevated Accumulation of Flavonoids and Other Phenolics. Plant Physiol 126(3):1105–1115

    Article  PubMed Central  PubMed  Google Scholar 

  • Mancinelli AL, Yang CH, Lindquist P, Anderson OR, Rabino I (1975) The action of streptomycin on the synthesis of chlorophyll and anthocyanin. Plant Physiol 55:251–257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchese J, Ferreira JFS, Rehder VLG, Rodrigues O (2010) Water deficit effect on the accumulation of biomass and artemisinin in annual wormwood (Artemisia annua L., asteraceae). Braz J Plant Physiol 22(1):1–9

    Article  Google Scholar 

  • Michalowski CB, Schmitt JM, Bohnert HJ (1989) Expression during salt stress and nucleotide sequence of cDNA for ferredoxin-NADP+ reductase from Mesembryanthemum crystallinum. Plant Physiol 89:817–822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Møller IM (2001) Plant mitochondria and oxidative stress: electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu Rev Plant Physiol Plant Mol Biol 52:561–591

    Article  PubMed  Google Scholar 

  • Morales LO, Tegelberg R, Brosché M, Keinanen M, Lindfors A, Aphalo PJ (2010) Effects of solar UV-A and UV-B radiation on gene expression and phenolic accumulation in Betula pendula leaves. Tree Physiol 30:923–934

    Article  CAS  PubMed  Google Scholar 

  • Mumm R, Schrank K, Wegener R, Schulz S, Hilker M (2003) Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition. J Chem Ecol 29:1235–1252

    Article  CAS  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nascimento AS, Catalano-Dupuy DL, Bernardes A, de-Oliveira NM, Santos MA, Ceccarelli EA, Polikarpov I (2007) Crystal structures of Leptospira interrogans FAD-containing ferredoxin-NADP+ reductase and its complex with NADP+. BMC Struct Biol 7:69

    Article  PubMed Central  PubMed  Google Scholar 

  • Palatnik JF, Valle EM, Carrillo N (1997) Oxidative stress causes ferredoxin-NADP+ reductase solubilization from the thylakoid membranes in methyl viologen-treated plants. Plant Physiol 115:1721–1727

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Qureshi MI, Israr M, Abdin MZ, Iqbal M (2005) Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environ Exp Bot 53:185–193

    Article  CAS  Google Scholar 

  • Rai R, Meena RP, Smita SS, Shukla A, Rai SK, Rai SP (2011a) UV-B and UV-C pretreatments induce physiological changes and artemisinin biosynthesis in Artemisia annua L.—an antimalarial plant. J Photochem Photobiol, B 105(3):216–225

    Article  CAS  Google Scholar 

  • Rai R, Pandey S, Rai SP (2011b) Arsenic-induced changes in morphological, physiological and biochemical attributes and artemisinin biosynthesis in Artemisia annua, an antimalarial plant. Ecotoxicology 20(8):1900–1913. doi:10.1007/s10646-011-0728-8

    Article  CAS  PubMed  Google Scholar 

  • Ramani S, Chelliah J (2007) UV-B-induced signalling events leading to enhanced-production of catharanthine in Catharanthus roseus cell suspension cultures. BMC Plant Biol 7:61–77. doi:10.1186/1471-2229-7-61

    Article  PubMed Central  PubMed  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17(6):603–614

    Article  CAS  PubMed  Google Scholar 

  • Ro DK, Paradise EM, Ouellet M, Fisher KJ, Newman KL, Ndungu JM, Ho KA, Eachus RA, Ham TS, Kirby J, Chang MC, Withers ST, Shiba Y, Sarpong R, Keasling JD (2006) Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440:940–943

    Article  CAS  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908–1920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schaedle M, Bassham JA (1977) Chloroplast glutathione reductase. Plant Physiol 59(5):1011–1012. doi:10.1104/pp.59.5.1011

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith WE, Shivaji R, Williams WP, Luthe DS, Sandoya GV, Smith CL, Sparks DL, Brown AE (2012) A Maize Line Resistant to Herbivory Constitutively Releases (E)-β-Caryophyllene. J Econ Entomol 105:120–128

    Article  CAS  PubMed  Google Scholar 

  • Solovchenko A, Merzlyak M (2003) Optical properties and contribution of cuticle to UV protection in plants: experiments with apple fruit. Photochem Photobiol Sci 2(8):861–866

    Article  CAS  PubMed  Google Scholar 

  • Sperandio O, Fan BT, Zakrzewska K, Jia ZJ, Zheng RL, Panaye A, Doucet JP, Fassi NE (2002) Theoretical study of fast repair of DNA damage by cistanoside C and analogs: mechanism and docking. SAR QSAR Environ Res 13:243–260

    Article  CAS  PubMed  Google Scholar 

  • Stapleton AE, Walbot V (1994) Flavonoids Can Protect Maize DNA from the Induction of Ultraviolet Radiation Damage. Plant Physiol 105:881–889

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Streb P, Michael-Knauf A, Feierabend J (1993) Preferential photoinactivation of catalase and photoinhibition of photosystem II are common early symptoms under various osmotic and chemical stress conditions. Physiol Plant 88:590–598. doi:10.1111/j.1399-3054.1993.tb01376.x

    Article  CAS  Google Scholar 

  • Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH (2002) The impact of oxidative stress on Arabidopsis mitochondria. Plant J 32:891–904

    Article  CAS  PubMed  Google Scholar 

  • UNITAID (2012) Artemisinin and ACT demand and supply forecasting: ACT forecasting report Q3 2012. December 2012

  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, Del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant, Cell Environ 29:1449–1459

    Article  CAS  Google Scholar 

  • Van Aken O, Zhang B, Carrie C, Uggalla V, Paynter E, Giraud E, Whelan J (2009) Defining the mitochondrial stress response in Arabidopsis thaliana. Mol Plant 2:1310–1324

    Article  PubMed  Google Scholar 

  • WHO (2006) WHO monograph on good agricultural and collection practices (GACP) for Artemisia annua L. World Health Organization, Geneva

    Google Scholar 

  • Xie DY, Zou ZR, Ye HC, Li GF, Guo ZC (2001) Selection of hairy root clones of Artemisia annua L. for artemisinin production. Israel J Plant Sci 49:129–134

    Article  CAS  Google Scholar 

  • Yang SH, Wang LJ, Li SH (2007) Ultraviolet-B irradiation-induced freezing tolerance in relation to antioxidant system in winter wheat (Triticum aestivum L.) leaves. Environ Exp Bot 60:300–307

    Article  CAS  Google Scholar 

  • Yao Y, Yang Y, Ren J, Li C (2006) UV-spectra dependence of seedling injury and photosynthetic pigment change in Cucumis sativus and Glycine max. Environ Expl Bot 57:160–167

    Article  CAS  Google Scholar 

  • Yu XD, Jones HD, Ma YZ, Wang GP, Xu ZS, Zhang BM, Zhang YJ, Ren GW, Pickett JA, Xia LQ (2012) E)-β-Farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum. Funct Integr Genomics 12(1):207–213. doi:10.1007/s10142-011-0244

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Zheng LP, Wang JW (2012) Nitric oxide elicitation for secondary metabolite production in cultured plant cells. Appl Microbiol Biotechnol 93(2):455–466. doi:10.1007/s00253-011-3658-8

    Article  CAS  PubMed  Google Scholar 

  • Zhao SS, Zeng MY (1985) Spektrometrische Hochdruck-Flu¨ ssigkeits Chromatographische (HPLC) Untersuchungen zur Analytik von Qinghaosu. Planta Med 51:233–237

    Article  Google Scholar 

  • Zhao MG, Liu YG, Zhang LX, Zheng L, Bi YR (2007) Effects of enhanced UV-B radiation on the activity and expression of alternative oxidase in red kidney bean leaves. J Integr Plant Biol 49(9):1320–1326

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to CSIR (council of scientific and industrial research), New Delhi, India for financial assistance, Dr. Priyanka Pandey for her assistance in heatmap preparation and Prof. R. P. Sinha for critical reading of the manuscript. Neha Pandey is thankful to UGC (University grant commission), New Delhi, India for financial assistance in the form of RFSMS (Research fellowship in science for meritorious students).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shashi Pandey-Rai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, N., Pandey-Rai, S. Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L.. Plant Cell Tiss Organ Cult 116, 371–385 (2014). https://doi.org/10.1007/s11240-013-0413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0413-0

Keywords

Navigation