Skip to main content
Log in

Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Regrowth capacity and genetic stability of plants recovered following cryopreservation are associated with changes in DNA epigenetics, particularly in DNA methylation levels. In this study, global DNA methylation profiles associated with frequency of regrowth of peach palm (Bactris gasipaes) somatic embryos following cryopreservation using droplet-vitrification were investigated. Somatic embryo clusters (SEC) subjected to plant vitrification solution 3 (PVS3) for different durations (0, 60, 120, 180, and 240 min) were evaluated for regrowth capacity. The highest frequency of regrowth (52.4 %) was obtained when SEC were incubated in PVS3 for 120 min prior to droplet-vitrification cryopreservation. Global DNA methylation profiles were influenced by both cryoprotectants and droplet-vitrification cryopreservation. Incubation of SEC in PVS3 for limited durations not only reduced frequency of regrowth, but also increased DNA methylations levels when compared with proliferating SEC grown in a temporary immersion system. Although SEC subjected to cryopreservation exhibited the highest DNA methylation variation, 120 min SEC incubation in a PVS3 solution resulted in the recovery of initial global methylation profiles after 24 weeks of regrowth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CIA:

Chloroform-isoamyl alcohol

CTAB:

Cetyltrimethyl ammonium bromide

DMSO:

Dimethylsulfoxide

Dntp:

Deoxynucleotide triphosphates

EDTA:

Ethylenediaminetetraacetic acid

FM:

Fresh mass

HPLC:

High-performance liquid chromatography

LN:

Liquid nitrogen

PVS:

Plant vitrification solution

SEC:

Somatic embryo clusters

SNK:

Student–Newman–Keuls

TIS:

Temporary immersion system

References

  • Ai P-F, Lu L-P, Song J-J (2012) Cryopreservation of in vitro-grown shoot-tips of Rhabdosia rubescens by encapsulation-dehydration and evaluation of their genetic stability. Plant Cell Tiss Organ Cult 108:381–387

    Article  Google Scholar 

  • Al-Bahrany AM, Al-Khayri JM (2012) Optimizing in vitro Cryopreservation of Date Palm (Phoenix dactylifera L.). Biotechnology 11:59–66

    Article  CAS  Google Scholar 

  • Balick MJ (1988) The palm-tree of life: biology, utilization and conservation. In: Balick MJ (ed) Advances in Economic Botany. Society for Economic Botany, pp 282

  • Bovi MLA, Martins CC, Spiering SH (2004) Desidratação de sementes de quatro lotes de pupunheira: efeitos sobre a germinação e o vigor. Hort Bras 22:109–112

    Article  Google Scholar 

  • Clement CR (2008) Peach palm (Bactris gasipaes). In: Janick J, Paul RE (eds) The Encyclopedia of Fruit and Nuts. CABI Publishing, Wallingford, pp 93–101

    Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dulloo M, Guarino L, Engelmann F, Maxted N, Newbury J, Attere F, Ford-Lloyd BV (1998) Complementary conservation strategies for the genus Coffea: a case study of Mascarene Coffea species. Genet Res Crop Evol 45:565–579

    Article  Google Scholar 

  • Engelmann F (2004) Plant cryopreservation: progress and prospects. In Vitro Cell Dev –P1 40:427–433

    Article  Google Scholar 

  • Escalona M, Lorenzo JC, Gonzalez BL, Danquita M, Onzales JL, Desjardins Y, Borroto CG (1999) Pineapple (Ananas comosus (L.) Merr.) micropropagation in temporary immersion systems. Plant Cell Rep 18:743–748

    Article  CAS  Google Scholar 

  • Finnegan EJ (2010) DNA methylation: a dynamic regulator of genome organization and gene expression in plants. In: Pua EC, Davey MR (eds) Plant developmental biology: biotechnological perspectives, vol 2. Springer, Berlin, pp 295–323

    Chapter  Google Scholar 

  • Finnegan EJ, Kovac KA (2000) Plant DNA methyltransferases. Plant Mol Biol 43:189–201

    Article  CAS  PubMed  Google Scholar 

  • Fraga HPF, Vieira LN, Caprestano CA, Steinmacher DA, Micke GA, Spudeit DA, Pescador R, Guerra MP (2012) 5-Azacytidine combined with 2,4-D improves somatic embryogenesis of Acca sellowiana (O. Berg) Burret by means of changes in global DNA methylation levels. Plant Cell Rep 31:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Freckleton RP, Matos DMS, Bovi MLA, Watkinson AR (2003) Predicting the impacts of harvesting using structured population models: the importance of density-dependence and timing of harvest for a tropical palm tree. J Appl Ecol 40:846–858

    Article  Google Scholar 

  • Fukao T, Bailey-Serres J (2004) Plant responses to hypoxia—is survival a balancing act? Trends Plant Sci 9:449–456

    Article  CAS  PubMed  Google Scholar 

  • Funnekotter B, Kaczmarczyk A, Turner SR, Bunn E, Zhou W, Smith S, Flematti G, Mancera RL (2013) Acclimation-induced changes in cell membrane composition and influence on cryotolerance of in vitro shoots of native plant species. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-013-0308-0

    Google Scholar 

  • Gonzalez-Arnao MT, Panta A, Roca WM, Escobar RH, Engelmann F (2008) Development and large scale application of cryopreservation techniques for shoot and somatic embryo cultures of tropical crops. Plant Cell Tiss Organ Cult 92:1–13

    Article  Google Scholar 

  • Hao YJ, Liu QL, Deng XX (2001) Effect of cryopreservation on apple genetic resources at morphological, chromosomal, and molecular levels. Cryobiology 43:46–53

    Article  CAS  PubMed  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. Cryo Lett 25:3–22

    Google Scholar 

  • He XJ, Chen T, Zhu JK (2011) Regulation and function of DNA methylation in plants and animals. Cell Res 21:442–465

    Article  CAS  PubMed  Google Scholar 

  • Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N, Bulski A, Albuisson J, Heredia F, Audigier BG, Dillmann C, Guerche P, Hospital F, Colot V (2009) Assessing the impact of transgenerational epigenetic variation on complex traits. PLoS Genet 5:e1000530

    Article  PubMed  Google Scholar 

  • Johnston JW, Harding K, Bremner DH, Souch G, Green J, Lynch PT, Grout B, Benson EE (2005) HPLC analysis of plant DNA methylation: a study of critical methodological factors. Plant Physiol Biochem 43:844–853

    Article  CAS  PubMed  Google Scholar 

  • Johnston JW, Benson EE, Harding K (2009) Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol Bioch 4:123–131

    Article  Google Scholar 

  • Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Gen 13:484–492

    Article  CAS  Google Scholar 

  • Kaity A, Ashmore SE, Drew RA, Dulloo ME (2008) Assessment of genetic and epigenetic changes following cryopreservation in papaya. Plant Cell Rep 27:1529–1539

    Article  CAS  PubMed  Google Scholar 

  • Kaity A, Drew RA, Ashmore SE (2013) Genetic and epigenetic integrity assessment of acclimatized papaya plants regenerated directly from shoot-tips following short- and long-term cryopreservation. Plant Cell Tiss Organ Cult 112:75–86

    Article  CAS  Google Scholar 

  • Kohmura H, Sakai A, Chokyu S, Yakuwa T (1992) Cryopreservation of in vitro-cultured multiple bud clusters of asparagus (Asparagus officinalis L. cv. Hiroshimagreen (2np30)) by the techniques of vitrification. Plant Cell Rep 11:433–437

    Article  Google Scholar 

  • Mikula A, Tomiczak K, Rybczynski JJ (2011) Cryopreservation enhances embryogenic capacity of Gentiana cruciata (L.) suspension culture and maintains (epi) genetic uniformity of regenerants. Plant Cell Rep 30:565–574

    Article  CAS  PubMed  Google Scholar 

  • Mora-Urpí J, Weber JC, Clement CR (1997) Peach palm (Bactris gasipaes Kunth). In: Mora-Urpí J, Weber JC, Clement CR (eds) Promoting the conservation and use of underutilized and neglected crops. Institute of Plant Genetics and Crop Plant Research, Rome, p 81

    Google Scholar 

  • Morel G, Wetmore RH (1951) Tissue culture of monocotyledons. Am J Bot 38:138–140

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Ng HH, Bird A (1999) DNA methylation and chromatin modification. Curr Opin Genet Dev 9:158–163

    Article  CAS  PubMed  Google Scholar 

  • Nishizawa S, Sakai A, Amano Y, Matsuzawa T (1993) Cryopreservation of asparagus (Asparagus officinalis L.) embryogemc suspension cells and subsequent plant-regeneration by vitrification. Plant Sci 91:67–73

    Article  CAS  Google Scholar 

  • Noyer-Weidner M, Trautner TA (1993) Methylation of DNA in prokaryotes. In: Saluz HP, Jost JP (eds) DNA Methylation: molecular biology and biological significance. Birkhauser, Boston, pp 39–108

    Chapter  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification, encapsulation-vitrification and droplet-vitrification: a review. Cryo Lett 28:151–172

    CAS  Google Scholar 

  • Smulders MJM, de Klerk GJ (2011) Epigenetics in plant tissue culture. Plant Growth Regul 63:137–146

    Article  CAS  Google Scholar 

  • Steinmacher DA, Saldanha CW, Clement CR, Guerra MP (2007a) Cryopreservation of peach palm zygotic embryos. Cryo lett 28:13–22

    Google Scholar 

  • Steinmacher DA, Cangahuala-Inocente GC, Clement CR, Guerra MP (2007b) Somatic embryogenesis from peach palm zygotic embryos. In vitro Cell Dev Plant 43:124–132

    Article  Google Scholar 

  • Steinmacher DA, Guerra MP, Saare-Surminski K, Lieberei R (2011) A temporary immersion system improves in vitro regeneration of peach palm through secondary somatic embryogenesis. Ann Bot 108:1463–1475

    Article  CAS  PubMed  Google Scholar 

  • Suranthran P, Gantait S, Sinniah UR, Subramaniam S, Alwee SSRS, Roowi SH (2012) Effect of loading and vitrification solutions on survival of cryopreserved oil palm polyembryoids. Plant Growth Regul 66:101–109

    Article  CAS  Google Scholar 

  • Valledor L, Hasbún R, Meijón M, Rodríguez JL, Santamaría E, Viejo M, Berdasco M, Feito I, Fraga MF, Cañal MJ, Rodríguez R (2007) Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tiss Org Cult 91:75–86

    Article  CAS  Google Scholar 

  • Wang Z, He Y (2008) Effect of cryopreservation on the development and DNA methylation patterns of Arabidopsis thaliana. Life Sci J 6:55–60

    Google Scholar 

  • Yi JY, Sylvestre I, Colin M, Salma M, Lee SY, Kim HH, Park HJ, Engelmann F (2012) Improved cryopreservation using droplet-vitrification and histological changes associated with cryopreservation of Madder (Rubia akane Nakai). Kor J Hort Sci Technol 30:79–84

    Google Scholar 

Download references

Acknowledgments

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC) and Cordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel P. Guerra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heringer, A.S., Steinmacher, D.A., Fraga, H.P.F. et al. Global DNA methylation profiles of somatic embryos of peach palm (Bactris gasipaes Kunth) are influenced by cryoprotectants and droplet-vitrification cryopreservation. Plant Cell Tiss Organ Cult 114, 365–372 (2013). https://doi.org/10.1007/s11240-013-0331-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0331-1

Keywords

Navigation