Skip to main content
Log in

An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

An efficient agroinfiltration-based gene silencing assay was established to evaluate candidate genes likely to be involved in resistance to powdery mildew (Uncinula necator) in grapevine (Vitis vinifera L.). Functional assays were performed using two grapevine genotypes, cv. Superior, mildew-susceptible, and cv. Run1 Mtp3294, mildew-resistant. Constructs encoding a self-complementary “hairpin” RNA for phytoene desaturase (PDS) along with the green fluorescent protein gene were introduced into Agrobacterium tumefaciens. These constructs were used for agroinfiltration of leaf tissues, yielding both efficient transformation and gene silencing events. The agroinfiltration procedure did not interfere with the powdery mildew infection steps. Confocal laser-scanning microscopy analysis revealed co-localization of the GFP signal with cells lacking chlorophyll autofluorescence, further supporting PDS gene silencing. The extent of PDS mRNA degradation was evaluated by qRT-PCR in the agroinfiltrated areas and results supported a significant reduction of the gene transcripts in the silenced regions. Findings of the present work suggest that the developed silencing procedures represent a useful tool for functional characterization of grapevine genes involved in powdery mildew resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Becker A, Lange M (2009) VIGS-genomics goes functional. Trends Plant Sci 15:1–4

    Article  PubMed  Google Scholar 

  • Bhaskar PB, Venkateshwaran V, Wu L, Anè J-M, Jiang J (2009) Agrobacterium-mediated transient gene expression and silencing: a rapid tool for functional gene assay in potato. PLoS One 4(6):e5812. doi:10.1371/journal.pone.0005812

    Article  PubMed  Google Scholar 

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214:159–173

    Article  CAS  Google Scholar 

  • Bouquet A (1986) Introduction dans l’espece Vitis vinifera L. d’un caractere de resistance a l’oidium (Uncinula necator Schw. Burr.) issu de l’espece Muscadinia rotundifolia (Michx.) Small. Vigne-vini 12:141–146

    Google Scholar 

  • Brodersen P, Voinnet O (2006) The diversity of RNA silencing pathways in plants. Trends Genet 22(5):268–280

    Article  PubMed  CAS  Google Scholar 

  • Carra A, Gambino G, Urso S, Nervo G (2011) Non coding RNAs and gene silencing in grape. In: Erdmann VA, Barciszewski J (eds) Non coding RNAs in plants, RNA technologies. Springer, Berlin, pp 67–78

    Chapter  Google Scholar 

  • Cunningham FX Jr, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Dong W, Nowara D, Schweizer P (2006) Protein polyubiquitination plays a role in basal host resistance of barley. Plant Cell 18:3321–3331

    Article  CAS  Google Scholar 

  • Douchkov D, Nowara D, Zierold U, Schweizer P (2005) A high-throughput gene-silencing system for the functional assessment of defence-related genes in barley epidermal cells. MPMI 18:755–761

    Article  PubMed  CAS  Google Scholar 

  • Dry IB, Feechan A, Anderson C, Jermakow AM, Bouquet A, Adam-Blondon A-F, Thomas MR (2010) Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Austr J Grape Wine Res 16:94–105

    Article  CAS  Google Scholar 

  • Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS (2006) Gateway compatible vectors for plant functional genomics and proteomics. Plant J 45:616–629

    Article  PubMed  CAS  Google Scholar 

  • Faccioli P, Stanca AM, Morcia C, Alberici R, Terzi V (2010) Identification of a set of widely expressed genes in grape (Vitis vinifera L.) and its functional characterization: a multi-evidence based study. Vitis 49(4):175–179

    CAS  Google Scholar 

  • Frizzi A, Huang S (2010) Tapping RNA silencing pathways for plant biotechnology. Plant Biotechnol J 8:1–23

    Article  Google Scholar 

  • Hein I, Barciszewska-Pacak M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 138:2155–2164

    Article  PubMed  CAS  Google Scholar 

  • Igarashi A, Yamagata K, Sugai T, Takahashi Y, Sugawara E, Tamura A, Yaegashi H, Yamagishi N, Takahashi T, Isogai M, Takahashi H, Yoshikawa N (2009) Apple latent spherical virus vectors for reliable and effective virus-induced gene silencing among a broad range of plants including tobacco, tomato, Arabidopsis thaliana, cucurbits, and legumes. Virology 386:407–416

    Article  PubMed  CAS  Google Scholar 

  • Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449:463–467. doi:10.1038/nature06148

    Article  PubMed  CAS  Google Scholar 

  • Kankanala P, Czymmek K, Valenta B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724

    Article  CAS  Google Scholar 

  • Karimi M, Inzè D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Depicker A, Hilson P (2007) Recombinational cloning with plant Gateway vectors. Plant Physiol 145:1144–1154

    Article  PubMed  CAS  Google Scholar 

  • Leinhos GME, Gold RE, Düggelin M, Guggenheim R (1997) Development and morphology of Uncinula necator following treatment with the fungicides kresoxim-methyl and penconazole. Mycol Res 101:1033–1046

    Article  CAS  Google Scholar 

  • Mani T, Manjula S (2011) Optimization of Agrobacterium-mediated transient gene expression and endogenous gene silencing in Piper colubrinum Link. by vacuum infiltration. Plant Cell Tiss Organ Cult 105:113–119

    Article  CAS  Google Scholar 

  • Martin RC, Glover-Cutter K, Martin RR, Dombrowski JE (2012) Virus induced gene silencing in Lolium temulentum. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-012-0257-z

    Google Scholar 

  • McGinnis KM (2010) RNAi for functional genomics in plants. Brief Funct Genomics 9:111–117

    Article  PubMed  CAS  Google Scholar 

  • Muruganantham M, Moskovitz Y, Haviva S, Horesha T, Fenigsteina A, Preezb J, Stephanb D, Burger JT, Mawassi M (2009) Grapevine virus A-mediated gene silencing in Nicotiana benthamiana and Vitis vinifera. J Virol Methods 155:167–174

    Article  PubMed  CAS  Google Scholar 

  • Niks RE (1986) Failure of haustorial development as a factor in slow growth and development of Puccinia hordei in partially resistant barley seedlings. Physiol Mol Plant Pathol 28:309–322

    Article  Google Scholar 

  • Pauquet J, Bouquet A, This P, Adam-Blondon A-F (2001) Establishment of a local map of AFLP markers around the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theor Appl 103:1201–1210

    Article  CAS  Google Scholar 

  • Payne RW, Harding SA, Murray DA, Soutar DM, Baird DB, Welham SJ, Kane AF, Gilmour AR, Thompson R, Webster R, Tunnicliffe Wilson G (2006) GenStat release 9 reference manual, part 2 directives. VSN International, Hemel Hempstead

    Google Scholar 

  • Pearson RC, Gadoury DM (1991) Powdery mildew of grape. In: Kumar J, Chaube HS, Singh US, Mukhopadhyay AN (eds) Plant diseases of international importance: diseases of fruit crops, vol III. Prentice Hall, Englewood Cliffs, pp 129–146

    Google Scholar 

  • Pruss GJ, Nester EW, Vance V (2008) Infiltration with Agrobacterium tumefaciens induces host defense and development-dependent responses in the infiltrated zone. MPMI 21:1528–1538

    Article  PubMed  CAS  Google Scholar 

  • Romero I, Tikunov Y, Bovy A (2011) Virus-induced gene silencing in detached tomatoes and biochemical effects of phytoene desaturase gene silencing. J Plant Physiol 168:1129–1135

    Article  PubMed  CAS  Google Scholar 

  • Rumbolz J, Kassermeyer H-H, Steinmetz V, Deising HB, Mendgen K, Mathys D, Wirtz S, Guggenheim R (2000) Differentiation of infection structures of the powdery mildew fungus Uncinula necator and adhesion to the host cuticle. Can J Bot 78:409–421

    Google Scholar 

  • Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P (2008) Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Rep 27:1053–1063

    Article  PubMed  CAS  Google Scholar 

  • Tanaka S, Ishihama N, Yoshioka H, Huser A, O’Connell R, Tsuji G, Tsuge S, Kubo Y (2009) The Colletotrichum orbiculare ssd1 mutant enhances Nicotiana benthamiana basal resistance by activating a mitogen-activated protein kinase pathway. Plant Cell 21:2517–2526

    Article  PubMed  CAS  Google Scholar 

  • Varsha Wesley S, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP, Gleave AP, Green AG, Waterhouse PM (2001) Construct design for efficient, effective and highthroughput gene silencing in plants. Plant J 27:581–590

    Article  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A et al (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2(12):e1326. doi:10.1371/journal.pone.0001326

    Article  PubMed  Google Scholar 

  • Vidal JR, Gomez C, Cutanda MC, Shrestha BR, Bouquet A, Thomas MR, Torregrosa L (2010) Use of gene transfer technology for functional studies in grapevine. Aust J Grape Wine Res 16:138–151

    Article  CAS  Google Scholar 

  • Wielopolska A, Townley H, Moore I, Waterhouse P, Helliwell C (2005) A high-throughput inducible RNAi vector for plants. Plant Biotechnol J 3:583–590

    Article  PubMed  CAS  Google Scholar 

  • Wroblewski T, Tomczak A, Michelmore R (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol J 3:259–273

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Barizza E, Costa A, Formentin E, Ruberti C, Carimi F, Lo Schiavo F (2008) Agroinfiltration of grapevine leaves for fast transient assays of gene expression and for long-term production of stable transformed cells. Plant Cell Rep 27:845–853

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Italian national project ‘VItis GeNome Analysis’ (‘VIGNA’), Progetto di Ateneo and Progetto from Agriculture Ministry and funded by MiPAF (Ministero delle Politiche Agricole e Forestali). We thank Dr. Anne-Françoise Adam-Blondon and Mrs. Marion Guillou, INRA (France) for providing the Run1 Mtp3294 grapevine genotype and Dr Mark R. Thomas supplying the PDS EST clone (GeneBank ID: CN007512). We thank Donata Pagani (CRA-GPG) for excellent technical assistance, Dr Alessandro Tondelli for statistical analysis and Dr Elisabetta Barizza for hydroponic plants management.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michela Zottini or Giampiero Valè.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urso, S., Zottini, M., Ruberti, C. et al. An Agrobacterium tumefaciens-mediated gene silencing system for functional analysis in grapevine. Plant Cell Tiss Organ Cult 114, 49–60 (2013). https://doi.org/10.1007/s11240-013-0305-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-013-0305-3

Keywords

Navigation