Skip to main content
Log in

CLAVATA1-LIKE, a leucine-rich-repeat protein receptor kinase gene differentially expressed during adventitious caulogenesis in Pinus pinaster and Pinus pinea

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Molecular cloning and characterization of a CLAVATA1-LIKE gene in Pinus pinaster and Pinus pinea is reported. CLAVATA1 is a well-characterized gene in Arabidopsis integral to the balance between primordial differentiation and meristem proliferation. Currently, it is not known if the Arabidopsis model of in vitro caulogenesis is applicable to conifers. In this work, we study the putative role of the CLAVATA1-LIKE gene during caulogenic induction in cotyledons of P. pinea and P. pinaster after exposure to benzyladenine. Expression analysis showed that the gene was differentially expressed during the first phases of adventitious caulogenesis in cotyledons from both species, suggesting that CLAVATA1-LIKE may play a role in caulogenesis in conifers. A binary vector carrying CLAVATA1-LIKE promoter driven GFP:GUS expression was constructed. Results of genetic transformation showed GUS activity during somatic embryogenic mass proliferation and embryo maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alonso P, Moncaleán P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2006) An improved micropropagation protocol for stone pine (Pinus pinea L.). Ann For Sci 63:879–885

    Article  CAS  Google Scholar 

  • Alonso P, Cortizo M, Cantón FR, Fernández B, Rodríguez A, Centeno ML, Cánovas FM, Ordás RJ (2007) Identification of genes differentially expressed during adventitious shoot induction in Pinus pinea cotyledons by subtractive hybridization and quantitative PCR. Tree Physiol 27:1721–1730

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Álvarez JM, Majada J, Ordás RJ (2009a) An improved micropropagation protocol for maritime pine (Pinus pinaster Ait.) isolated cotyledons. Forestry 82:175–184

    Article  Google Scholar 

  • Álvarez R, Álvarez JM, Humara JM, Revilla Á, Ordás RJ (2009b) Genetic transformation of cork oak (Quercus suber L.) for herbicide resistance. Biotechnol Lett 31:1477–1483

    Article  PubMed  Google Scholar 

  • Álvarez JM, Cortizo M, Ordás RJ (2012) Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster. J Plant Physiol. doi:10.1016/j.jplph.2012.07.014

    Google Scholar 

  • An G, Ebert P, Mitra A, Ha S (1988) Binary vectors. In: Gelvin SB, Schilperoort RA (eds) Plant molecular biology manual. Kluwer, Dordrecht, pp 1–19

    Google Scholar 

  • Ávila C, Pérez-Rodríguez J, Cánovas FM (2006) Molecular characterization of a receptor-like protein kinase gene from pine (Pinus sylvestris L.). Planta 224:12–19

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bubner B, Baldwin IT (2004) Use of real-time PCR for determining copy number and zygosity in transgenic plants. Plant Cell Rep 23:263–271

    Article  PubMed  CAS  Google Scholar 

  • Cairney J, Zheng L, Cowels A, Hsiao J, Zismann V, Liu J, Ouyang S, Thibaud-Nissen F, Hamilton J, Childs K (2006) Expressed sequence tags from loblolly pine embryos reveal similarities with angiosperm embryogenesis. Plant Mol Biol 62:485–501

    Article  PubMed  Google Scholar 

  • Carles CC, Fletcher JC (2003) Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci 8:394–401

    Article  PubMed  CAS  Google Scholar 

  • Cary AJ, Che P, Howell SH (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32:867–877

    Article  PubMed  CAS  Google Scholar 

  • Cervera M, Pina J, Juárez J, Navarro L, Peña L (2000) A broad exploration of a transgenic population of citrus: stability of gene expression and phenotype. Theor Appl Genet 100:670–677

    Article  CAS  Google Scholar 

  • Che P, Gingerich DJ, Lall S, Howell SH (2002) Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771–2785

    Article  PubMed  CAS  Google Scholar 

  • Christianson ML, Warnick DA (1988) Organogenesis in vitro as a developmental process. HortScience 23(3):515–519

    Google Scholar 

  • Clark SE, Williams RW, Meyerowitz EM (1997) The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89:575–585

    Article  PubMed  CAS  Google Scholar 

  • Coke JE (1996) Basal nutrient medium for in vitro cultures of loblolly pines (Patent US) Westvaco Corporation, New York, NY

  • Cortizo M, Cuesta C, Centeno ML, Rodríguez A, Fernández B, Ordás R (2009) Benzyladenine metabolism and temporal competence of Pinus pinea cotyledons to form buds in vitro. J Plant Physiol 166:1069–1076

    Article  PubMed  CAS  Google Scholar 

  • Cortizo M, Álvarez JM, Rodríguez A, Fernández B, Ordás RJ (2010) Cloning and characterization of a type-A response regulator differentially expressed during adventitious shoot formation in Pinus pinea L. J Plant Physiol 167:1023–1026

    Article  PubMed  CAS  Google Scholar 

  • Cuesta C, Rodríguez A, Centeno ML, Ordás RJ, Fernández B (2009) Caulogenic induction in cotyledons of stone pine (Pinus pinea): relationship between organogenic response and benzyladenine trends in selected families. J Plant Physiol 166:1162–1171

    Article  PubMed  CAS  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283:1911–1914

    Article  PubMed  CAS  Google Scholar 

  • Gordon SP, Chickarmane VS, Ohno C, Meyerowitz EM (2009) Multiple feedback loops through cytokinin signaling control stem cell number within the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 106:16529–16534

    Article  PubMed  CAS  Google Scholar 

  • Groß-Hardt R, Laux T (2003) Stem cell regulation in the shoot meristem. J Cell Sci 116:1659–1666

    Article  PubMed  Google Scholar 

  • Hanks SK, Quinn AM (1991) Protein kinase catalytic domain sequence database: identification of conserved features of primary structure and classification of family members. Methods Enzymol 200:38

    Article  PubMed  CAS  Google Scholar 

  • Harris JM, Dickstein R (2010) Control of root architecture and nodulation by the LATD/NIP transporter. Plant Signal Behav 5:1365

    Article  PubMed  CAS  Google Scholar 

  • Heller G, Lundén K, Finlay RD, Asiegbu FO, Elfstrand M (2012) Expression analysis of Clavata1-like and Nodulin21-like genes from Pinus sylvestris during ectomycorrhiza formation. Mycorrhiza 22:271–277

    Article  PubMed  CAS  Google Scholar 

  • Howell SH, Lall S, Che P (2003) Cytokinins and shoot development. Trends Plant Sci 8:453–459

    Article  PubMed  CAS  Google Scholar 

  • Humánez A, Blasco M, Brisa C, Segura J, Arrillaga I (2012) Somatic embryogenesis from different tissues of Spanish populations of maritime pine. Plant Cell Tissue Org Cult. doi:10.1007/s11240-012-0203-0

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Karimi M, Inz D, Depicker A (2002) GATEWAY (TM) vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Klimaszewska K, Trontin JF, Becwar M, Devillard C, Park YS, Lelu-Walter MA (2007) Recent progress on somatic embryogenesis of four Pinus spp. Tree For Sci Biotechnol 1:11–25

    Google Scholar 

  • Kramer EM (2009) New model systems for the study of developmental evolution in plants. In: Jeffery WR (ed) Curr Top Dev Biol. Academic Press, Elseiver, Burlington, pp 67–105

    Google Scholar 

  • Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-tcompetent Arabidopsis genomic library in Agrobacterium. Nat Biotechnol 9:963–967

    Article  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Lelu-Walter M-A, Bernier-Cardou M, Klimaszewska K (2006) Simplified and improved somatic embryogenesis for clonal propagation of Pinus pinaster (Ait.). Plant Cell Rep 25:767–776

    Article  PubMed  CAS  Google Scholar 

  • Levée V, Garin E, Klimaszewska K, Seguin A (1999) Stable genetic transformation of white pine (Pinus strobus L.) after cocultivation of embryogenic tissues with Agrobacterium tumefaciens. Mol Breed 5:429–440

    Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta] CT method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Malabadi RB, da Silva JAT, Nataraja K (2008) Agrobacterium tumefaciens-mediated genetic transformation of Pinus kesiya Royle ex Gord (Khasi Pine). Asian Australas J Plant Sci Biotech 2:7–14

    Google Scholar 

  • Matzke AJM, Matzke MA (1998) Position effects and epigenetic silencing of plant transgenes. Curr Opin Plant Biol 1:142–148

    Article  PubMed  CAS  Google Scholar 

  • Meng L, Zhang S, Lemaux PG (2010) Toward molecular understanding of in vitro and in planta shoot organogenesis. Crit Rev Plant Sci 29:108–122

    Article  CAS  Google Scholar 

  • Moncaleán P, Cortizo M, Alonso P, Fernández B, Rodríguez A, Centeno ML, Ordás RJ (2005) Organogenic responses of Pinus pinea cotyledons to hormonal treatments: BA metabolism and cytokinin content. Tree Physiol 25:1–9

    Article  PubMed  Google Scholar 

  • Nimchuk ZL, Tarr PT, Ohno C, Qu X, Meyerowitz EM (2011) Signaling in the Arabidopsis shoot meristem stem cell niche correlates with ligand-dependent trafficking of the CLV1 receptor kinase. Curr Biol 21:345–352

    Article  PubMed  CAS  Google Scholar 

  • Ramarosandratana A, Harvengt L, Bouvet A, Calvayrac R, Paques M (2001) Influence of the embryonal-suspensor mass (ESM) sampling on development and proliferation of maritime pine somatic embryos. Plant Sci 160:473–479

    Article  PubMed  CAS  Google Scholar 

  • Reddy SM, Pandey AK, Melayah D, Marmeisse R, Gay G (2003) The auxin responsive gene Pp-C61 is up-regulated in Pinus pinaster roots following inoculation with ectomycorrhizal fungi. Plant Cell Environ 26:681–691

    Article  CAS  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386

    PubMed  CAS  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37(6):e45

    Article  PubMed  CAS  Google Scholar 

  • Sablowski R (2009) Cytokinin and WUSCHEL tie the knot around plant stem cells. Proc Natl Acad Sci USA 106:16016–16017

    Article  PubMed  CAS  Google Scholar 

  • Schoof H, Lenhard M, Haecker A, Mayer KFX, Jürgens G, Laux T (2000) The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100:635–644

    Article  PubMed  CAS  Google Scholar 

  • Shani E, Yanai O, Ori N (2006) The role of hormones in shoot apical meristem function. Curr Opin Plant Biol 9:484–489

    Article  PubMed  CAS  Google Scholar 

  • Stahl Y, Simon R (2005) Plant stem cell niches. Int J Dev Biol 49:479–489

    Article  PubMed  Google Scholar 

  • Stam M, Mol JNM, Kooter JM (1997) Review article: the silence of genes in transgenic plants. Ann Bot 79:3–12

    Article  CAS  Google Scholar 

  • Stasolla C, van Zyl L, Egertsdotter U, Craig D, Liu W, Sederoff RR (2003) The effects of polyethylene glycol on gene expression of developing white spruce somatic embryos. Plant Physiol 131:49–60

    Article  PubMed  CAS  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2011) A gymnosperm homolog of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE-1 (SERK1) is expressed during somatic embryogenesis. Plant Cell Tissue Organ Cult 109:41–50

    Article  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Curr Opin Plant Biol 2:61–64

    Article  PubMed  CAS  Google Scholar 

  • Tereso S, Miguel C, Zoglauer K, Valle-Piquera C, Oliveira MM (2006) Stable Agrobacterium-mediated transformation of embryogenic tissues from Pinus pinaster Portuguese genotypes. Plant Growth Regul 50:57–68

    Article  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Trontin JF, Walter C, Klimaszewska K, Park YS, Lelu-Walter MA (2007) Recent progress in genetic transformation of four Pinus spp. Transgenic Plant J 1:314–329

    Google Scholar 

  • Valdés AE, Ordás RJ, Fernández B, Centeno ML (2001) Relationships between hormonal contents and the organogenic response in Pinus pinea cotyledons. Plant Physiol Biochem 39:377–384

    Article  Google Scholar 

  • von Arnold S, Sabala I, Bozhkov P, Dyachok J, Filonova L (2002) Developmental pathways of somatic embryogenesis. Plant Cell Tissue Org Cult 69:233–249

    Article  Google Scholar 

  • Xu R, Li QQ (2008) Protocol: streamline cloning of genes into binary vectors in Agrobacterium via the Gateway® TOPO vector system. Plant Methods 4:4

    Article  PubMed  Google Scholar 

  • Zhang S, Lemaux PG (2004) Molecular analysis of in vitro shoot organogenesis. Crit Rev Plant Sci 23:325–335

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Kevin Dalton for proofreading the manuscript and Dr. Ruben Alvarez from University of Essex (UK) for the helpful comments. This work was supported by ‘Ministerio de Educación y Ciencia de España’ (AGL2009-12139-C02-01); ‘Plan de Ciencia Tecnología e Innovación del Principado de Asturias’ (IB08-054 and FC10-COF10-07); predoctoral grant from the ‘Ministerio de Educación y Ciencia de España’ (FPU AP2005-0140) to J.M. Álvarez and from ‘Plan de Ciencia Tecnología e Innovación del Principado de Asturias’ (BP10-098) to N. Bueno.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo J. Ordás.

Additional information

José M. Alvarez and Millán Cortizo contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic Supplementary Material 1

Primer sequences. Primers used for PCR and Quantitative RT-PCR (PDF 144 kb)

Electronic Supplementary Material 2

Map of the binary vector pPipsCLV1L-GFP:GUS. A promoter fragment of 1,502 bp length was cloned into a Gateway® pENTR/D TOPO vector and introduced by att site LR recombination into the pKGWFS7,0. Sequence annotations were performed with Geneious software (PNG 51 kb)

Electronic Supplementary Material 3

P. pinaster and P. pinea CLUSTALW CDS alignment (PNG 197 kb)

Electronic Supplementary Material 4

Genomic sequence of PipsCLV1L (HQ377527) of 5,373 bp including a 1,513 bp region of the promoter, 79 bp 5’UTR, 119 bp of one intron, 3,045 bp CDS and 617 bp 3’UTR. The 1,502 bp fragment cloned in pPipsCLV1L-GFP:GUS is also indicated. Sequence annotations were performed with the Geneious software (PNG 29 kb)

Electronic Supplementary Material 5

Unrooted phylogenetic tree of the protein kinase domains of the CLV1-like proteins from various species generated using the Geneious software by the UPGMA method and the Jukes-Cantor genetic distance model. (PNG 45 kb)

Electronic Supplementary Material 6

Expression of CLAVATA1-Like in somatic embryos of P. pinaster as determined by Quantitative RT-PCR. Embryogenic masses were harvested after 0, 45 and 90 days of culture on medium supplemented with ABA. (PNG 13 kb)

Electronic Supplementary Material 7

PCR analysis from kanamycin-resistant lines using primers for a 355 bp GFP gene fragment and a 200 bp VirG gene fragment. M: 100 bp DNA ladder (Nippon Genetics). C+: AGL1 pPipsCLV1L-GFP:GUS. C-: P5LV41 non-transformed line. 1–24: kanamycin-resistant lines. (PNG 573 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, J.M., Cortizo, M., Bueno, N. et al. CLAVATA1-LIKE, a leucine-rich-repeat protein receptor kinase gene differentially expressed during adventitious caulogenesis in Pinus pinaster and Pinus pinea . Plant Cell Tiss Organ Cult 112, 331–342 (2013). https://doi.org/10.1007/s11240-012-0240-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-012-0240-8

Keywords

Navigation