Skip to main content
Log in

A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

In this study, a high frequency cyclic secondary somatic embryogenesis system was established for Cyclamen persicum. Moreover, the influence of primary somatic embryos (PSEs) at different stages of development, number of passages, abscisic acid (ABA), and sucrose concentrations on secondary somatic embryogenesis were investigated. Primary somatic embryos, at different stages of development, were incubated on an induction medium consisting of half-strength Murashige and Skoog (MS) (Physiol Plant 15:473–497, 1962), 2 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), and 0.2 mg/l 6-benzyladenine (BA). These initial PSE cultures along with calli were transferred to a plant growth regulator (PGR)-free medium to promote secondary somatic embryo (SSE) development. Embryogenic calli were induced at a frequency >90% from all PSE cultures. Both morphology and size of PSEs influenced embryogenic competence. Large-sized globular embryos (GEs) yielded the highest number of SSEs followed by small- and large-sized torpedo-stage embryos (TEs). Passages of induced calli obtained from large-sized GEs had no effects on frequency of secondary embryogenesis; however, they significantly influenced SSE production. Calli from the first passage exhibited the highest competence for secondary embryogenesis, 100% frequency of SSEs, producing 3,306 and 1,296 SSEs per gram fresh weight callus and embryo, respectively. Incubating embryogenic calli derived from large-sized primary GEs in the first passage on a medium containing 30 g/l sucrose, and supplemented with either 0.5 or 1.0 mg/l abscisic acid (ABA) increased the frequency of TEs, consequently enhancing normal embryo development of SSEs. Transfer of such embryogenic calli to a PGR-free medium containing 60 g/l sucrose was optimal for SSE induction, producing 3,204 SSEs per gram callus and 8% TEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

2,4-D:

2,4-Dichlorophenoxyacetic acid

ABA:

Abscisic acid

BA:

6-Benzyladenine

GEs:

Globular embryos

MS:

Murashige and Skoog’s medium

NTEs:

Non-polar tuber embryos

PGRs:

Plant growth regulators

PSEs:

Primary somatic embryos

SEs:

Somatic embryos

SSEs:

Secondary somatic embryos

TEs:

Torpedo-stage embryos

TWEs:

Twin embryos

UBEs:

Unipolar tuber-bud embryos

UTEs:

Unipolar tuber-root embryos

References

  • Bian FH, Gong XQ, You CR, Qu FN (2008) Somatic embryogenesis and variation of somatic embryo in Cyclamen persicum. China Biotechnol 28(6):103–106

    Google Scholar 

  • Borchert T, Fuchs J, Winkelmann T, Hohe A (2007) Variable DNA content of Cyclamen persicum regenerated via somatic embryogenesis: rethinking the concept of long-term callus and suspension cultures. Plant Cell Tiss Organ Cult 90:255–263. doi:10.1007/s11240-007-9264-x

    Article  CAS  Google Scholar 

  • Chen AH, Yang JL, Niu YD, Yang CP, Liu GF, Yu CY, Li CH (2010) High-frequency somatic embryogenesis from germinated zygotic embryos of Schisandra chinensis and evaluation of the effects of medium strength, sucrose, GA3, and BA on somatic embryo development. Plant Cell Tiss Organ Cult 102:357–364. doi:10.1007/s11240-010-9740-6

    Article  CAS  Google Scholar 

  • Dai JL, Tan X, Zhan YG, Zhang YQ, Xiao S, Gao Y, Xu DW, Wang T, Wang XC, You XL (2011) Rapid and repetitive plant regeneration of Aralia elata Seem via somatic embryogenesis. Plant Cell Tiss Organ Cult 104:125–130. doi:10.1007/s11240-010-9801-x

    Article  Google Scholar 

  • Eudes F, Acharya S, Selinger LB, Cheng KJ (2003) A novel method to induce direct somatic embryogenesis, secondary embryogenesis and regeneration of fertile green cereal plants. Plant Cell Tiss Org Cult 73:147–157. doi:10.1023/A:1022800512708

    Article  CAS  Google Scholar 

  • Hoenemann C, Richardt S, Kruger K, Zimmer AD, Hohe A, Rensing SA (2010) Large impact of the apoplast on somatic embryogenesis in Cyclamen persicum offers possibilities for improved developmental control in vitro. BMC Plant Biol 10:77–93. doi:10.1186/1471-2229-10-77

    Article  PubMed  Google Scholar 

  • Hohe A, Winkelmann T, Schwenkel HG (1999a) CO2 accumulation in bioreactor suspension cultures of Cyclamen persicum Mill and its effect on cell growth and regeneration rate of somatic embryos. Plant Cell Rep 18:863–867. doi:10.1007/s002990050675

    Article  CAS  Google Scholar 

  • Hohe A, Winkelmann T, Schwenkel HG (1999b) The effect of oxygen partial pressure in bioreactors on cell proliferation and subsequent differentiation of somatic embryos of Cyclamen persicum. Plant Cell Tiss Organ Cult 59:39–45. doi:10.1023/A:1006323009860

    Article  CAS  Google Scholar 

  • Karami O, Deljou A, Kordestani GK (2008) Secondary somatic embryogenesis of carnation (Dianthus caryophyllus L.). Plant Cell Tiss Organ Cult 92:273–280. doi:10.1007/s11240-007-9332-2

    Article  Google Scholar 

  • Kawahara R, Komamine A (1995) Molecular basis of somatic embryogenesis, biotechnology in agriculture and forestry. In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed I, vol 30. Springer, Berlin, pp 30–40

    Google Scholar 

  • Kikuchi A, Sanuki N, Higashi K, Koshiba T, Kamada H (2006) Abscisic acid and stress treatment are essential for the acquisition of embryogenic competence by carrot somatic cells. Planta 223:637–645. doi:10.1007/s00425-005-0114-y

    Article  PubMed  CAS  Google Scholar 

  • Kiviharju E, Tuominen U, Tormala T (1992) The effect of explant material on somatic embryogenesis of Cyclamen persicum Mill. Plant Cell Tiss Organ Cult 28:187–194. doi:10.1007/BF00055516

    Article  Google Scholar 

  • Krajnakova J, Häggman H, Gömöry D (2009) Effect of sucrose concentration, polyethylene glycol and activated charcoal on maturation and regeneration of Abies cephalonica Loud somatic embryos. Plant Cell Tiss Organ Cult 96:251–262. doi:10.1007/s11240-008-9482-x

    Article  CAS  Google Scholar 

  • Kreuger M, Postma E, Brouwer Y, van Holst GJ (1995) Somatic embryogenesis of Cyclamen persicum Mill in liquid medium. Physiol Plant 94:605–612. doi:10.1111/j.1399-3054.1995.tb00974.x

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nakagawaa H, Saijyoa T, Yamauchi N, Shigyo M, Kako S, Ito A (2001) Effects of sugars and abscisic acid on somatic embryogenesis from melon (Cucumis melo L.) expanded cotyledon. Sci Hortic 90:85–92

    Article  Google Scholar 

  • Othmani A, Bayoudh C, Drira N, Marrakchi M, Trifi M (2009) Somatic embryogenesis and plant regeneration in date palm Phoenix dactylifera L cv. Boufeggous is significantly improved by fine chopping and partial desiccation of embryogenic callus. Plant Cell Tiss Organ Cult 97:71–79. doi:10.1007/s11240-009-9500-7

    Article  Google Scholar 

  • Paunescu A (2008) Histological investigation of the secondary somatic embryogenesis of Alyssum borzaeanum (Brassicaceae). Phytologia Balcanica 14(1):111–117

    Google Scholar 

  • Prange ANS, Serek M, Bartsch M, Winkelmann T (2010a) Efficient and stable regeneration from protoplasts of Cyclamen coum Miller via somatic embryogenesis. Plant Cell Tiss Organ Cult 101:171–182. doi:10.1007/s11240-010-9674-z

    Article  Google Scholar 

  • Prange ANS, Bartsch M, Serek M, Winkelmann T (2010b) Regeneration of different Cyclamen species via somatic embryogenesis from callus, suspension cultures and protoplasts. Sci Hortic 125:442–450. doi:10.1016/j.scienta.2010.04.018

    Article  CAS  Google Scholar 

  • Quiroz-Figueroa FR, Rojas-Herrera R, Galaz-Avalos RM, Loyola-Vargas VM (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Organ Cult 86:285–301. doi:10.1007/s11240-006-9139-6

    Article  Google Scholar 

  • Raemakers CJJM, Jacobsen E, Visser RGF (1995) Secondary somatic embryogenesis and applications in plant breeding. Euphytica 81:93–107. doi:10.1007/BF00022463

    Article  Google Scholar 

  • Rai MK, Shekhawat NS, Harish, Gupta AK, Phulwaria M, Kheta R, Jaiswal U (2011) The role of abscisic acid in plant tissue culture: a review of recent progress. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-011-9923-9

  • Santa-Catarina C, Olmedo AS, Meyer GA, Macedo J, Amorim W, Vian AM (2004) Repetitive somatic embryogenesis of Ocotea catharinensis Mez. (Lauraceae): effect of somatic embryo developmental stage and dehydration. Plant Cell Tiss Organ Cult 78:55–62. doi:10.1023/B:TICU.0000020395.40974.8a

    Google Scholar 

  • Schmidt TH, Ewald A, Seyring M, Hohe A (2006) Comparative analysis of cell cycle events in zygotic and somatic embryos of Cyclamen persicum indicates strong resemblance of somatic embryos to recalcitrant seeds. Plant Cell Rep 25:643–650. doi:10.1007/s00299-006-0130-9

    Article  PubMed  CAS  Google Scholar 

  • Seyring M, Hohe A (2005) Induction of desiccation tolerance in somatic embryos of C. persicum Mill. J Hortic Sci Biotechol 80:65–69

    Google Scholar 

  • Seyring M, Ewald A, Mueller A, Haensch KT (2009) Screening for propagation suitability in vitro of different Cyclamen species. Electron J Biotechnol 12(4):1–10. doi:10.2225/vol12-issue4-fulltext-7

    Article  Google Scholar 

  • Sholi NJY, Chaurasia A, Agrawal A, Sarin NB (2009) ABA enhances plant regeneration of somatic embryos derived from cell suspension cultures of plantain cv. Spambia (Musa sp.). Plant Cell Tiss Organ Cult 99:133–140. doi:10.1007/s11240-009-9585-z

    Article  CAS  Google Scholar 

  • Singh M, Chaturvedi R (2009) An efficient protocol for cyclic somatic embryogenesis in Neem (Azadirachta indica A Juss.). Int J Environ Sci Eng 1(1):49–51

    Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tissue Organ Cult 74:15–35. doi:10.1023/A:1023345803336

    Article  CAS  Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tiss Organ Cult 93:163–171. doi:10.1007/s11240-008-9355-3

    Article  CAS  Google Scholar 

  • Veramendi J, Navarro L (1996) Influence of physical condition of nutrient medium and sucrose on somatic embryogenesis of date palm. Plant Cell Tiss Organ Cult 45:159–161. doi:10.1007/BF00048760

    Article  CAS  Google Scholar 

  • Winkelmann T, Serek M (2005) Genotypic differences in callus formation and regeneration of somatic embryos in Cyclamen persicum Mill. Euphytica 144:109–117. doi:10.1007/s10681-005-5038-x

    Article  CAS  Google Scholar 

  • Winkelmann T, Hohe A, Schwenkel HG (1998a) Establishing embryogenic suspension cultures in Cyclamen persicum ‘Purple Flamed’. Adv Horticult Sci 12:25–30

    Google Scholar 

  • Winkelmann T, Sangwan RS, Schwenkel HG (1998b) Flow cytometric analyses in embryogenic and non-embryogenic callus lines of Cyclamen persicum Mill: relation between ploidy level and competence for somatic embryogenesis. Plant Cell Rep 17:400–404. doi:10.1007/s002990050414

    Article  CAS  Google Scholar 

  • Winkelmann T, Meyer L, Serek M (2004a) Desiccation of somatic embryos of Cyclamen persicum Mill. J Hortic Sci Biotechnol 79:472–478

    Google Scholar 

  • Winkelmann T, Mussmann V, Serek M (2004b) Cryopreservation of embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Rep 23:1–8. doi:10.1007/s00299-004-0783-1

    Article  PubMed  CAS  Google Scholar 

  • Winkelmann T, Specht J, Serek M (2006) Efficient plant regeneration from protoplasts isolated from embryogenic suspension cultures of Cyclamen persicum Mill. Plant Cell Tiss Org Cult 86:337–347. doi:10.1007/s11240-006-9129-8

    Article  Google Scholar 

  • You CR, Fan TJ, Qu FN, Bian FH, Liang LK, Gong XQ (2008) Somatic embryogenesis and study on histology and cytology in Cyclamen persicum Mill. J Sichuan Univ (National Sci Ed) 45(6):1477–1484

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jian-cheng Song from School of Biological Sciences, University of Canterbury, New Zealand and Dr. Rong-shuang Lin from University of Maryland, College Park, USA for their assistance in editing and proofreading the manuscripts. This project was supported by Key Scientific and Technological Projects of Shandong province (Contract No. 2004GG4202010 and 2007GG20002019) and Natural Science Foundation of Shandong province (Grant No. Y2007D07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Ning Qu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

You, C.R., Fan, T.J., Gong, X.Q. et al. A high-frequency cyclic secondary somatic embryogenesis system for Cyclamen persicum Mill. Plant Cell Tiss Organ Cult 107, 233–242 (2011). https://doi.org/10.1007/s11240-011-9974-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9974-y

Keywords

Navigation