Skip to main content
Log in

Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Castilleja tenuiflora is a medicinal plant that grows in pine–oak woods primarily in southern and central Mexico. It is highly valued for its medicinal properties, which have been attributed to aucubin-like iridoids. In the present study, we developed an efficient protocol for in vitro shoot proliferation and ex vitro rooting of C. tenuiflora. Using a colorimetric method, we determined total iridoid contents of various different tissues of propagated plants. The shoots were induced from nodal explants cultured on Murashige and Skoog (MS) (1962) medium supplemented with indole-3-butyric acid (IBA) (0 and 0.5 μM) and different concentrations of thidiazuron (TDZ), 6-benzyladenine (BA), or kinetin (KIN) (0–20 μM). Of the cytokinins tested, KIN was more effective for shoot induction than TDZ or BA, and the highest shoot proliferation rate was achieved with 5 μM KIN (4 shoots per explant). Plantlets were rooted on MS medium, nutrient solution, or potting mix, alone or in combination with auxins. The best responses (100% rooting efficiency) were obtained by dipping shoots in half-strength MS medium containing 7.5 μM IBA before transfer to potting mix. On average, each shoot formed 9 roots of 39.3 ± 3.8 mm in length after 21 days. These roots appeared to be more functional than those that developed in nutrient solution, and were associated with a high survival rate (95%) during acclimatization and cultivation in a greenhouse, where flowering occurred after 4 months. Propagated plants accumulated iridoids, thus representing a potential source of pharmacologically useful compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

6-Benzyladenine

IBA:

Indole-3-butyric acid

KIN:

Kinetin

LR:

Longest root

MS:

Murashige and Skoog medium

NAA:

α-Naphthalene acetic acid

NS:

Hoagland’s nutritive solution

PGR:

Plant growth regulator

TDZ:

Thidiazuron

References

  • Alonso-Castro AJ, Villarreal ML, Salazar-Olivo LA, Gomez-Sanchez M, Dominguez F, Garcia-Carranca A (2011) Mexican medicinal plants used for cancer treatment: pharmacological, phytochemical and ethnobotanical studies. J Ethnopharmacol 133:945–972

    Article  PubMed  CAS  Google Scholar 

  • Arslanian RL, Harris GH, Stermitz FR (1985) Some iridoid glucosides, including the new 6-deoxycatalpol, from indian paintbrush species related to Castilleja miniata. J Nat Prod 48:957–961

    Article  CAS  Google Scholar 

  • Backes CL, Hoch WA (2010) In vitro propagation of wavy-leaved Indian paintbrush (Castilleja applegatei Fern.). Sci Hortic. doi:10.1016/j.scientia.2010.08.005

  • Bairu MW, Amoo SO, Van Staden J (2011) Comparative phytochemical analysis of wild and in vitro-derived greenhouse-grown tubers, in vitro shoots and callus-like basal tissues of Harpagophytum procumbens. S Afr J Bot. doi:10.1016/j.sajb.2010.09.009

  • Bejar E, Reyes-Chilpa R, Jiménez-Estrada M (2000) Bioactive compounds from selected plants used in the XVI Century Mexican traditional medicine. In: Atta-ur-Rahman (ed) Studies in natural products chemistry. Elsevier Sci BV 24:799–844

    CAS  Google Scholar 

  • Bye R (1986) Medicinal plants of the sierra madre: comparative study of tarahumara and Mexican market plants. Econ Bot 40:103–124

    Article  Google Scholar 

  • Coste A, Vlase L, Halmagyi A, Deliu C, Coldea G (2011) Effects of plant growth regulators and elicitors on production of secondary metabolites in shoot cultures of Hypericum hirsutum and Hypericum maculatum. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-011-9919-5

  • Fischer E (2004) Scrophulariacea. In: Kadereit JW, Kubitzki K (eds) The families and genera of vascular plants, vol. VII Flowering plants dicotyledons. Lamiales (except Acanthaceae including Avicenniaceae). Springer, Berlin, pp 333–432

    Google Scholar 

  • Frederiksen LB, Damtoft S, Jensen SR (1999) Biosynthesis of iridoids lacking C-10 and the chemotaxonomic implications of their distribution. Phytochemistry 52:1409–1420

    Article  CAS  Google Scholar 

  • Fuchs A, Bowers MD (2004) Patterns of iridoid glycoside production and induction in Plantago lanceolata and the importance of plant age. J Chem Ecol 30:1723–1741

    Article  PubMed  CAS  Google Scholar 

  • Gálvez M, Martín-Cordero C, Ayuso MJ (2005) Iridoids as DNA topoisomerase I poisons. J Enz Inhib Med Chem 20:389–392

    Article  Google Scholar 

  • Garcia R, Pacheco G, Falcao E, Borges G, Mansur E (2011) Influence of type of explant, plant growth regulators, salt composition of basal medium, and light on callogenesis and regeneration in Passiflora suberosa L. (Passifloraceae). Plant Cell Tiss Organ Cult. doi:10.1007/s11240-010-9892-4

  • Graham JG, Quinn ML, Fabricant DS, Farnsworth NR (2000) Plants used against cancer—an extension of the work of Jonathan Hartwell. J Ethnopharm 73:347–377

    Article  CAS  Google Scholar 

  • Gurel E, Yucesan B, Aglic E, Gurel S, Verma S, Sokmen M, Sokmen A (2011) Regeneration and cardiotonic glycoside production in Digitalis davisiana Heywood (Alanya Foxglove). Plant Cell Tiss Organ Cult 104:217–225

    Article  CAS  Google Scholar 

  • Hatzilazarou SP, Syros TD, Yupsanis TA, Bosabalidis AM, Economou AS (2006) Peroxidases, lignin and anatomy during in vitro and ex vitro rooting of gardenia (Gardenia jasminoides Ellis) microshoots. J Plant Physiol 163:827–836

    Article  PubMed  CAS  Google Scholar 

  • Hazarika BN (2006) Morpho-physiological disorders in in vitro culture of plants. Sci Hort 108:105–120

    Article  CAS  Google Scholar 

  • Ho JN, Lee YH, Lee YD, Jun WJ, Kim HK, Hong BS, Shin DH, Cho HY (2005) Inhibitory effect of aucubin isolated from Eucommia ulmoides against UVB-induced matrix metalloproteinase-1 production in human skin fibroblasts. Biosci Biotechnol Biochem 69:2227–2231

    Article  PubMed  CAS  Google Scholar 

  • Hung JY, Yang CJ, Tsai YM, Huang HW, Huang MS (2008) Antiproliferative activity of aucubin is through cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells. Clin Exp Pharm Physiol 35:995–1001

    Article  CAS  Google Scholar 

  • Jiménez ME, Padilla ME, Reyes ChR, Espinosa LM, Melendez E, Lira-Rocha A (1995) Iridoid glycoside constituents of Castilleja tenuiflora. Biochem System Ecol 23:455–456

    Article  Google Scholar 

  • Koetle M, Finnie J, van Staden J (2010) In vitro regeneration in Dierama erectum Hillard. Plant Cell Tiss Organ Cult 103:23–31

    Article  Google Scholar 

  • Levieille G, Wilson G (2002) In vitro propagation and iridoid analysis of the medicinal species Harpagophytum procumbens and H. zeyheri. Plant Cell Rep 21:220–225

    Article  CAS  Google Scholar 

  • Lisowska K, Wysokinska H (2000) In vitro propagation of Catalpa ovata G. Don. Plant Cell Tiss Organ Cult 60:171–176

    Article  Google Scholar 

  • López-Laredo A, Ramírez-Flores F, Sepúlveda-Jiménez G, Trejo-Tapia G (2009) Comparison of metabolite levels in callus of Tecoma stans (L.) Juss. ex Kunth. cultured in photoperiod and darkness. In Vitro Cell Dev Biol-Plant 45:550–558

    Article  Google Scholar 

  • Ma G, Teixeira da Silva J, Lü J, Zhang X, Zhao J (2010) Shoot organogenesis and plant regeneration in Metabriggsia ovalifolia. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-010-9875-5

  • Mallón R, Rodríguez-Oubiña J, González M (2010) In vitro propagation of the endangered plant Centaurea ultreiae: assessment of genetic stability by cytological studies, flow cytometry and RAPD analysis. Plant Cell Tiss Organ Cult 101:31–39

    Article  Google Scholar 

  • Martínez M (1994) Catálogo de nombres vulgares y científicos de Plantas Mexicanas, 3rd Ed. Fondo de Cultura Económica, México [in Spanish]

  • Mathad VT, Raj K, Bhaduri AP, Sahai R, Puri A, Tripathi LM, Srivastava VML (1998) Studies on the profile of immunostimulant activities of modified iridoid glycosides. Bioorgan Med Chem 6:605–611

    Article  CAS  Google Scholar 

  • Mead EW, Stermitz FR (1993) Content of iridoid glycosides in different parts of Castilleja integra. Phytochemistry 32:1155–1158

    Article  CAS  Google Scholar 

  • Meyer SE, Carlson SL (2004) Comparative seed germination biology and seed propagation of eight intermountain species of Indian Paintbrush. USDA forest service proceedings RMRS-P-3:125–130

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nguyen AT, Fontaine J, Malonne H, Claeys M, Luhmer M, Duez P (2005) A sugar ester and an iridoid glycoside from Scrophularia ningpoensis. Phytochemistry 66:1186–1191

    Article  PubMed  CAS  Google Scholar 

  • Rakshit S, Rashid Z, Sekhar J, Fatma T, Dass S (2010) Callus induction and whole plant regeneration in elite Indian maize (Zea mays L.) inbreds. Plant Cell Tiss Organ Cult 100:31–37

    Article  Google Scholar 

  • Rathore MS, Shekhawat NS (2009) Micropropagation of Pueraria tuberosa (Roxb. Ex Willd.) and determination of puerarin content in different tissues. Plant Cell Tiss Organ Cult 99:327–334

    Article  CAS  Google Scholar 

  • Rosas G (2007) Establecimiento del cultivo in vitro de Castilleja tenuiflora Benth. MSc Thesis. Centro de Desarrollo de Productos Bióticos. Instituto Politécnico Nacional. México

  • Sagare AP, Kuo CL, Chueh FS, Tsay HS (2001) De novo regeneration of Scrophularia yoshimurae Yamazaki (Scrophulariaceae) and quantitative analysis of harpagoside, an iridoid glucoside, formed in the aerial and underground parts of in vitro propagated and wild plants by HPLC. Biol Pharm Bull 24:1311–1315

    Article  PubMed  CAS  Google Scholar 

  • Salcedo G, Ventura E, Evangelista S, Zamilpa A, Trejo-Tapia G (2008) Propagation and acclimatization of the cancer herb Castilleja tenuiflora. In Vitro Cell Dev Biol Animal 44:571 (Meeting abstract)

  • Salcedo-Morales G, Rosas-Romero G, Nabor-Correa N, Bermúdez-Torres K, López-Laredo AR, Trejo-Tapia G (2009) Propagation and conservation of Castilleja tenuiflora Benth. (“hierba del cáncer”) through in vitro culture. Polibotánica 28:119–137

    Google Scholar 

  • Sampaio-Santos MI, Kaplan MAC (2001) Biosynthesis significance of iridoids in chemosystematics. J Braz Chem Soc 12:144–153

    Article  CAS  Google Scholar 

  • Shaik S, Singh N, Nicholas A (2010) Cytokinin-induced organogenesis in Lessertia (Sutherlandia) frutescens L. using hypocotyl and cotyledon explants affects yields of L-canavanine in shoots. Plant Cell Tiss Organ Cult. doi:10.1007/s11240-010-9855-3

  • Singh M, Chaturvedi (2010) Improved clonal propagation of Spilanthes acmella Murr. For production of scopoletin. Plant Cell Tiss Organ Cult 103:243–253

    Article  CAS  Google Scholar 

  • Sood H, Chauhan RS (2010) Biosynthesis and accumulation of a medicinal compound, Picroside-I, in cultures of Picrorhiza kurroa Royle ex Benth. Plant Cell Tiss Organ Cult 100:113–117

    Article  CAS  Google Scholar 

  • Tank DC, Olmstead RG (2008) From annuals to perennials: phylogeny of subtribe Castillejinae (Orobanchaceae). Am J Bot 95:608–625

    Article  PubMed  CAS  Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2001) Comparative studies of cytokinins on in vitro propagation of Bacopa monniera. Plant Cell Tiss Organ Cult 66:9–16

    Article  CAS  Google Scholar 

  • Tiwari V, Tiwari KN, Singh BD (2006) Shoot bud regeneration from different explants of Bacopa monniera (L.). Wettst. by trimethoprim and bavistin. Plant Cell Rep 25:629–635

    Article  PubMed  CAS  Google Scholar 

  • Trejo-Tapia G, Rosas-Romero G, López-Laredo AR, Bermúdez-Torres K, Zamilpa A (2010) In vitro organ cultures of the cancer herb Castilleja tenuiflora Benth. as potential sources of iridoids and antioxidant compounds. In: Orhan I (ed) Biotechnological production of secondary metabolites. Bentham Science Publishers Ltd (in press)

  • Ventura Z, Salcedo G, Hernández A, Martínez B, Trejo G, De Jesús A, Velázquez M, Jiménez A (2003) In vitro regeneration and acclimatization of plants of Turmeric (Curcuma longa L.) in a hydroponic system. Biotecnol Apl 20:25–31

    Google Scholar 

  • Vieitez A, Corredoira E, Ballester A, Muñoz F, Durán J, Ibarra M (2009) In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra. Plant Cell Tiss Organ Cult 98:135–145

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Secretaría de Investigación y Posgrado del IPN-México (SIP-IPN Grant 20100308) and by Fondo Mixto de Fomento a la Investigación Científica y Tecnológica CONACYT-Gobierno del Estado de Morelos (Grant MOR-2007-C01-79409). The authors are grateful to SIBE and EDI (IPN). The authors thank Mr. I. R. Velázquez Zavala for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Trejo-Tapia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Bonfil, B.P., Salcedo-Morales, G., López-Laredo, A.R. et al. Shoot regeneration and determination of iridoid levels in the medicinal plant Castilleja tenuiflora Benth.. Plant Cell Tiss Organ Cult 107, 195–203 (2011). https://doi.org/10.1007/s11240-011-9970-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-011-9970-2

Keywords

Navigation