Skip to main content
Log in

PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology

  • Review
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Due to the rising public concern over the use of genes conferring antibiotic and herbicide resistance, alternative systems for selection after plant transformation are being developed. A positive selection system consists of a physiologically inert metabolite as the selection agent and a respective gene which determines a metabolic advantage via selection agent utilization. The transformed cells are able to overcome the suppressive effects of the selection, while the untransformed ones starve but are not killed. The enzyme phosphomannose isomerase (PMI, E.C. 5.3.1.8) catalyzes the reversible interconversion of mannose-6-phosphate and fructose-6-phosphate in prokaryotic and eukaryotic organisms. The PMI selection system is called positive due to the effect of “starvation” caused to the nontransformed plant tissue because of its incapability to utilize mannose as a carbon source. In this mini-review we researched the literature to obtain a more detailed view of the characteristics, specifics, problems, and advantages of applying the PMI/mannose selection system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Man:

Mannose

M-6-P:

Mannose-6-phosphate

PMI:

Phosphomannose isomerase

TE:

Transformation efficiency

ATP:

Adenosine triphosphate

PCR:

Polymerase chain reaction

References

  • Aswath CR, Mo SY, Kim DH, Park SW (2006) Agrobacterium and biolistic transformation of onion using non-antibiotic selection marker phosphomannose isomerase. Plant Cell Rep 25:92–99

    Article  PubMed  CAS  Google Scholar 

  • Ballester A, Cervera M, Pena L (2008) Evaluation of selection strategies alternative to nptII in genetic transformation of citrus. Plant Cell Rep 27:1005–1015

    Article  PubMed  CAS  Google Scholar 

  • Boscariol RL, Almeida WAB, Derbyshire MTVC, Mourao Filho FAA, Mendes BMG (2003) The use of PMI/mannose selection system to recover transgenic sweet orange plants (Citrus sinensis L.Osbeck). Plant Cell Rep 22:122–128

    Article  PubMed  CAS  Google Scholar 

  • Briza J, Pavingerova D, Prikrylova P, Gazdova J, Vlasak J, Niedermeierova H (2008) Use of phosphomannose isomerase-based selection system for Agrobacterium-mediated transformation of tomato and potato. Biol Plant 52:453–461

    Article  CAS  Google Scholar 

  • Briza J, Ruzickova N, Niedermeierova H, Dusbabkova J, Vlasak J (2010) Phosphomannose isomerase gene for selection in lettuce (Lactuca sativa L.) transformation. Acta Biochim Pol 57:63–68

    PubMed  CAS  Google Scholar 

  • Chiang YC, Kiang YT (1988) Genetic analysis of mannose-6-phosphate isomerase in soybeans. Genome 30:808–811

    CAS  Google Scholar 

  • Craig W, Tepfer M, Degrassi G, Ripandelli D (2008) An overview of general features of risk assessment of genetically modified crops. Euphytica 164:853–880

    Article  Google Scholar 

  • Degenhardt J, Poppe A, Montag J, Szankowski I (2006) The use of the phosphomannose-isomerase/mannose selection system to recover transgenic apple plants. Plant Cell Rep 25:1149–1156

    Article  PubMed  CAS  Google Scholar 

  • Ebmeier A, Allison L, Cerutti H, Clemente T (2004) Evaluation of the Escherichia coli threonine deaminase gene as a selectable marker for plant transformation. Planta 218:751–758

    Article  PubMed  CAS  Google Scholar 

  • Erikson O, Hertzberg M, Nasholm T (2005) The dsdA gene from Escherichia coli provides a novel selectable marker for plant transformation. Plant Mol Biol 57:425–433

    Article  PubMed  CAS  Google Scholar 

  • European Food Safety Authority (EFSA) (2007) Statement of the Scientific Panel on genetically modified organisms on the safe use of the nptII antibiotic resistance marker gene in genetically modified plants. Available at: http://www.efsa.europa.eu/EFSA/Statement/gmo_statement_nptII_.pdf

  • Feeney M, Punja ZK (2003) Tissue culture and Agrobacterium-mediated transformation of hemp (Cannabis sativa L.). In Vitro Cell Dev Biol-Plant 39:578–585

    Article  CAS  Google Scholar 

  • Fu D, Xiao Y, Muthukrishnan S, Liang GH (2005) In vivo performance of a dual genetic marker, manA-GFP, in transgenic bentgrass. Genome 48:722–730

    Article  PubMed  CAS  Google Scholar 

  • Gadaleta A, Giancaspro A, Blechl A, Blanco A (2006) Phosphomannose isomerase, PMI, as a selectable marker gene for durum wheat transformation. J Cereal Sci 43: 31–37

    Google Scholar 

  • Gao Z, Xie X, Ling Y, Muthukrishnan S, Liang GH (2005) Agrobacterium tumefaciens-mediated sorghum transformation using a mannose selection system. Plant Biotechnol J 3(6):591–599

    Article  PubMed  CAS  Google Scholar 

  • Goldsworthy A, Street HE (1965) The carbohydrate nutrition of tomato roots VIII. The mechanism of the inhibition by D-mannose of the respiration of excised roots. Ann Bot 29:45–58

    CAS  Google Scholar 

  • Gracy RW, Noltmann EA (1968) Studies on phosphomannose isomerase I. Isolation, homogeneity, measurements, and determination of some physical properties. J Biol Chem 243:3161–3168

    PubMed  CAS  Google Scholar 

  • Haldrup A, Petersen SG, Okkels FT (1998) The xylose isomerase gene from Thermoanaerobacterium thermosulfurogenes allows effective selection of transgenic plant cells using D-xylose as the selection agent. Plant Mol Biol 37:287–296

    Article  PubMed  CAS  Google Scholar 

  • Hansen G, Wright MS (1999) Recent advances in the transformation of plants. Trends Plant Sci 4:226–231

    Article  PubMed  Google Scholar 

  • He Z, Fu Y, Si H, Hu G, Zhang S, Yu Y, Sun Z (2004) Phosphomannose-isomerase (pmi) gene as a selectable marker for rice transformation via Agrobacterium. Plant Sci 166:17–22

    Article  CAS  Google Scholar 

  • He Z, Duan Z, Liang W, Chen F, Yao W, Liang H, Yue C, Sun Z, Chen F, Dai J (2006) Mannose selection system used for cucumber transformation. Plant Cell Rep 25:953–958

    Article  PubMed  CAS  Google Scholar 

  • Hoa TTC, Bong BB (2002) Agrobacterium-mediated transformation of rice embryogenic suspension cells using phosphomannose isomerase gene, pmi, as a selectable marker. OmonRice 10:1–5

    Google Scholar 

  • Hoa TTC, Al-Babili S, Schaub P, Potrycus I, Beyer P (2003) Golden indica and japonica rice lines amenable to deregulation. Plant Physiol 133:161–169

    Article  PubMed  CAS  Google Scholar 

  • Hsiao P, Sanjaya Su R-C, Teixeira da Silva JA, Chan MT (2007) Plant native tryptophan synthase beta 1 gene is a non-antibiotic selection marker for plant transformation. Planta 225:897–906

    Google Scholar 

  • Jain M, Chengalrayan K, Abouzid A, Gallo M (2007) Prospecting the utility of a PMI/mannose selection system for the recovery of transgenic sugarcane (Saccharum spp. hybrid) plants. Plant Cell Rep 26:581–590

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Sheen J (1997) Sugar sensing in higher plants. Trends Plant Sci 2:208–214

    Article  Google Scholar 

  • Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT (1998) Analysis of mannose selection used for transformation of sugar beet. Mol Breed 4:111–117

    Article  CAS  Google Scholar 

  • Joersbo M, Petersen SG, Okkels FT (1999) Parameters interacting with mannose selection employed for the production of transgenic sugar beet. Physiol Plant 105:109–115

    Article  CAS  Google Scholar 

  • Kim JY, Jung M, Kim HS, Lee YH, Choi SH, Lim YP, Min BW, Yang SG, Harn CH (2002) A new selection system for pepper regeneration by mannose. J Plant Biotechnol 4:129–134

    Google Scholar 

  • Ku J-J, Park Y-H, Park Y-D (2006) A non-antibiotic selection system uses the phosphomannose isomerase (PMI) gene for Agrobacterium-mediated transformation of Chinese cabbage. J Plant Biol 49:115–122

    Article  CAS  Google Scholar 

  • LaFayette PR, Kane PM, Phan BH, Parrot WA (2005) Arabitol dehydrogenase as a selectable marker for rice. Plant Cell Rep 24:596–602

    Article  PubMed  CAS  Google Scholar 

  • Lamblin F, Aime A, Hano C, Roussy I, Domon J-M, Van Droogenbroeck B, Laine E (2007) The use of the phosphomannose isomerase gene as alternative selectable marker for Agrobacterium-mediated transformation of flax (Linum usitatissimum). Plant Cell Rep 26:765–772

    Article  PubMed  CAS  Google Scholar 

  • Lee BT, Matheson NK (1984) Phosphomannoisomerase and phosphogucoisomerase in seeds of Cassia coluteoides and some other legumes that synthesize galactomannan. Phytochemistry 23:983–987

    Article  CAS  Google Scholar 

  • Li H-Q, Kang P-J, Li M-L, Li M-R (2007) Genetic transformation of Torenia fournieri using the PMI/mannose selection system. Plant Cell Tiss Organ Cult 90:103–109

    Article  CAS  Google Scholar 

  • Lucca P, Ye X, Potrycus I (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed 7:43–49

    Article  CAS  Google Scholar 

  • Malca I, Endo R, Long M (1967) Mechanism of glucose counteraction of inhibition of root elongation by galactose, mannose and glucosamine. Phytopathology 57:272–278

    CAS  Google Scholar 

  • Miles JS, Guest JR (1984) Nucleotide sequence and transcriptional start point of the phosphomannose isomerase gene (manA) of Escherichia coli. Gene 32:41–48

    Article  PubMed  CAS  Google Scholar 

  • Min B-W, Cho Y-N, Song M-J, Noh T-K, Kim B-K, Chae W-K, Park Y-S, Choi Y-D, Harn C-H (2007) Successful genetic transformation of Chinese cabbage using phosphomannose isomerase as a selection marker. Plant Cell Rep 26:337–344

    Article  PubMed  CAS  Google Scholar 

  • Negrotto D, Jolley M, Beer S, Wenck AR, Hansen G (2000) The use of phosphomannose-isomerase as a selectable marker to recover transgenic maize plants (Zea mays L.) via Agrobacterium transformation. Plant Cell Rep 19:798–803

    Article  CAS  Google Scholar 

  • Niehues R, Hasilik M, Alton G, Korner C, Schiebe-Sukumar M, Koch HG, Zimmer K-P, Wu R, Harms E, Reiter K, von Figura K, Freeze HH, Harms HK, Marquardt T (1998) Carbohydrate-deficient glycoprotein syndrome type Ib: phosphomannose isomerase deficiency and mannose therapy. J Clin Invest 101:1414–1420

    Article  PubMed  CAS  Google Scholar 

  • O’Kennedy MM, Burger JT, Botha FC (2004) Pearl millet transformation system using the positive selectable marker gene phosphomannose isomerase. Plant Cell Rep 22:684–690

    Article  PubMed  Google Scholar 

  • Patil G, Deokar A, Jain PK, Thengane RJ, Srinivasan R (2009) Development of a phosphomannose isomerase-based Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 28:1669–1676

    Article  PubMed  CAS  Google Scholar 

  • Pego JV, Weisbeek PJ, Smeekens SCM (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol 119:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Penna S, Ramaswamy MB, Anant BV (2008) Mannose-based selection with phosphomannose-isomerase (PMI) gene as a positive selectable marker for rice genetic transformation. J Crop Sci Biotechnol 11(4):233–236

    Google Scholar 

  • Proudfoot AEI, Payton MA, Wells TNC (1994a) Purification and characterization of fungal and mammalian phosphomannose isomerases. Protein Chem 13:619–627

    Article  CAS  Google Scholar 

  • Proudfoot AEI, Turcatti G, Wells TNC, Payton MA, Smith DJ (1994b) Purification, cDNA cloning and heterologous expression of human phosphomannose isomerase. Eur J Biochem 219:415–423

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Kaiser BN, Franks T, Collins G, Sedgley M (2006) Improved methods in Agrobacterium-mediated transformation of almond using positive (mannose/pmi) or negative (kanamycin resistance) selection-based protocols. Plant Cell Rep 25:821–828

    Article  PubMed  CAS  Google Scholar 

  • Reed J, Privalle L, Luann Powell M, Meghji M, Dawson J, Dunder E, Suttle J, Wenck A, Launis K, Kramer C, Chang Y-F, Hansen G, Wright M (2001) Phosphomannose isomerase: an efficient selectable marker for plant transformation. In Vitro Cell Dev Biol-Plant 37:127–132

    CAS  Google Scholar 

  • Rosellini D, Capomaccio S, Ferradini N, Sardaro MLS, Nicolia A, Veronesi F (2007) Non-antibiotic, efficient selection for alfalfa genetic engineering. Plant Cell Rep 26:1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Sigareva M, Spivey R, Willits MG, Kramer CM, Chang Y-F (2004) An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23:236–245

    Article  PubMed  CAS  Google Scholar 

  • Society of Toxicology (SOT) (2003) Society of Toxicology position paper. The safety of genetically modified foods produced through biotechnology. Toxicol Sci 71:2–8

    Google Scholar 

  • Sonntag K, Wang Y, Wallbraun M (2004) A transformation method for obtaining marker-free plants based on phosphomannose isomerase. Acta Univ Latviensis Biol 676:223–226

    Google Scholar 

  • Stein JC, Hansen G (1999) Mannose induces an endonuclease responsible for DNA laddering in plant cells. Plant Physiol 121:1–9

    Article  Google Scholar 

  • Stoykova P, Radkova M, Stoeva-Popova P, Wang X, Atanassov A (2007) Transgenic Lycopersicon ssp. plants expressing the gene for human acidic fibroblast growth factor. Rep Tomato Genet Coop Tomato Genet Coop 57:41–43

    Google Scholar 

  • Todd R, Tague BW (2001) Phosphomannose isomerase: a versatile selectable marker for Arabidopsis thaliana germ-line transformation. Plant Mol Biol Rep 19:307–319

    Article  CAS  Google Scholar 

  • Wallbraun M, Sonntag K, Eisenhauer C, Krzcal G, Wang YP (2009) Phosphomannose isomerase (pmi) gene as a selectable marker for Agrobacterium-mediated transformation of rapeseed. Plant Cell Tiss Organ Cult 99:345–351

    Article  CAS  Google Scholar 

  • Wang AS, Evans RA, Altendorf PR, Hanten JA, Doyle MC, Rosichan JL (2000) A mannose selection system for production of fertile transgenic maize plants from protoplasts. Plant Cell Rep 19:654–660

    Article  CAS  Google Scholar 

  • Wright M, Dawson J, Dunder E, Suttie J, Reed J, Kramer C, Chang Y, Novitzky R, Wang H, Artim-Moore L (2001) Efficient biolistic transformation of maize (Zea mays L.) and wheat (Triticum aestivum L.) using the phosphomannose isomerase gene, pmi, as the selectable marker. Plant Cell Rep 20:429–436

    Article  CAS  Google Scholar 

  • Zai-Song D, Ming Z, Yu-Xiang J, Liang-Bi L, Ting-Yun K (2006) Efficient Agrobacterium-mediated transformation of rice by phosphomannose isomerase/mannose selection. Plant Mol Biol Rep 24:295–303

    Article  Google Scholar 

  • Zhang P, Puonti-Kaerlas J (2000) PIG-mediated cassava transformation using positive and negative selection. Plant Cell Rep 19:1041–1048

    Article  CAS  Google Scholar 

  • Zhang S, Zhu L-H, Li X-Y, Ahlman A (2005) Infection by Agrobacterium tumefaciens increased the resistance of leaf explants to selective agents in carnation (Dianthus caryophyllus L. and D. chinensis). Plant Sci 168:137–144

    Article  CAS  Google Scholar 

  • Zhu YJ, Agbayani R, McCafferty H, Albert HH, Moore PH (2005) Effective selection of transgenic papaya plants with the PMI/Man selection system. Plant Cell Rep 24:426–432

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stoykova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoykova, P., Stoeva-Popova, P. PMI (manA) as a nonantibiotic selectable marker gene in plant biotechnology. Plant Cell Tiss Organ Cult 105, 141–148 (2011). https://doi.org/10.1007/s11240-010-9858-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-010-9858-6

Keywords

Navigation