Skip to main content
Log in

In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

North American oak species, with their characteristic strong episodic seasonal shoot growth, are highly problematic for clonal micropropagation, resulting in the inability to achieve a stabilized shoot multiplication stage. The potential for initiating and proliferating shoot cultures derived from Quercus alba, Q. bicolor and Q. rubra explants was investigated, and a micropropagation method for these species was developed. Branch segments from 6 to 7-year-old trees were forced-flushed and the forced shoots were used as source of explants for culture initiation. A consistent shoot multiplication stage was achieved, in 13 of the 15 genotypes established in vitro, although marked differences occurred in explants from different genotypes/species. The control of efficient shoot multiplication involved the culture of decapitated shoots in a stressful horizontal position on cytokinin-containing medium with a sequence of transfers within a 6-week subculture cycle, which was beneficial to overcoming the episodic character of shoot growth. During each subculture cycle, the horizontally placed explants were cultured on media containing 0.2 mg l−1 benzyladenine (BA) for 2 weeks with two successive transfers (2 weeks each) to fresh medium with 0.1 mg l−1 BA, giving a 6-week subculture cycle. The general appearance and vigor of Q. alba and Q. bicolor shoot cultures were improved by the inclusion of both 0.1 mg l−1 BA and 0.5 mg l−1 zeatin in the medium used for the second transfer within the 6-week subculture cycle. Addition of AgNO3 (3 mg l−1) to the shoot proliferation medium of Q. rubra had a significant positive effect on shoot development pattern by reducing deleterious symptoms, including shoot tip necrosis and early senescence of leaves. The three species showed acceptable in vitro rooting rates by culturing microcuttings in medium containing 25 mg l−1 indolebutyric acid for 48 h with subsequent transfer to auxin-free medium supplemented with 0.4% activated charcoal. Although an initial 5-day dark period generally improved the rooting response, it was detrimental to the quality of regenerated plantlets. However, activated charcoal stimulated not only the rooting frequencies, but it also enhanced plant quality, as evidenced by root, shoot and leaf growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

6-Benzylaminopurine

GD:

Gresshoff and Doy (1972) medium

IBA:

Indole-3-butyric acid

WPM:

Woody Plant Medium (Lloyd and McCown 1980)

References

  • Ahn Y-J, Vang L, McKeon TA, Chen GQ (2007) High-frequency plant regeneration through adventitious shoot formation in castor (Ricinus communis L.). In Vitro Cell Dev Biol Plant 43:9–15. doi:10.1007/s11627-006-9009-2

    Article  CAS  Google Scholar 

  • Alaska-Kennedy Y, Yoshida H, Takahata Y (2005) Efficient plant regeneration from leaves of rapeseed (Brassica napus L.): the influence of AgNO3 and genotype. Plant Cell Rep 24:649–654. doi:10.1007/s00299-005-0010-8

    Article  CAS  Google Scholar 

  • Amissah N, Bassuk N (2007) Effect of light and stem banding treatments on rooting of Quercus bicolor Willd., Quercus robur L., and Quercus macrocarpa Michx. cuttings. HortScience 42:909

    Google Scholar 

  • Anten NPR, Casado-García R, Pierik R, Ponds TL (2006) Ethylene sensitivity affects changes in growth patterns, but not stem properties, in response to mechanical stress in tobacco. Physiol Plant 128:274–282. doi:10.1111/j.1399-3054.2006.00736.x

    Article  CAS  Google Scholar 

  • Armstrong J, Lemos EEP, Zobayed SMA, Justin S, Armstrong W (1997) A humidity-induced convective through flow ventilation sytem benefits Annona squamosa L. explants and coconut calloid. Ann Bot (Lond) 79:31–40. doi:10.1006/anbo.1996.0299

    Article  Google Scholar 

  • Ballester A, Vidal N, Vieitez AM (2009) Developmental stages during in vitro rooting of hardwood trees from material with juvenile and mature characteristics. In: Niemii K (ed) Adventitious root formation in forest trees and woody horticultural crops—from genes to applications. Research Singpost, Kerala, pp 277–299

    Google Scholar 

  • Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Rep 21:1167–1174. doi:10.1007/s00299-003-0625-6

    Article  PubMed  CAS  Google Scholar 

  • Chalupa V (1988) Large scale micropropagation of Quercus robur L. using adenine-type cytokinins and thidiazuron to stimulate shoot proliferation. Biol Plant 30:414–421. doi:10.1007/BF02890509

    Article  CAS  Google Scholar 

  • Chalupa V (1993) Vegetative propagation of oak (Quercus robur and Q. petraea) by cutting and tissue culture. Ann Sci For 50(Suppl 1):295–307. doi:10.1051/forest:19930730

    Article  Google Scholar 

  • Chalupa V (2000) In vitro propagation of mature trees of pedunculate oak (Quercus robur L). J For Sci 46:537–542

    CAS  Google Scholar 

  • Evers P, Vermeer E, van Eeden S (1993) Rejuvenation of Quercus robur. Ann Sci For 50(Suppl 1):330–335. doi:10.1051/forest:19930735

    Article  Google Scholar 

  • Faria FLC, Segura J (1997) In vitro control of adventitious bud differentiation by inorganic medium components and silver thiosulfate in explants of Passiflora edulis F. Flavicarpa. In Vitro Cell Dev Biol Plant 33:209–212. doi:10.1007/s11627-997-0024-8

    Article  CAS  Google Scholar 

  • Fishel DW, Zaczek JJ, Preece JE (2003) Positional influence on rooting of shoots forced from the main bole of swamp white oak and northern red oak. Can J Res 33:705–711. doi:10.1139/x02-201

    Article  Google Scholar 

  • Gingas VM (1991) Asexual embryogenesis and plant regeneration from male catkins of Quercus. HortScience 26:1217–1218

    Google Scholar 

  • González-Benito ME, García-Martín G, Manzanera JA (2002) Shoot development in Quercus suber L. somatic embryos. In Vitro Cell Dev Biol Plant 38:477–480. doi:10.1079/IVP2002318

    Article  Google Scholar 

  • Gresshoff PM, Doy CH (1972) Development and differentiation of haploid Lycopersicon esculentum. Planta 107:161–170. doi:10.1007/BF00387721

    Article  Google Scholar 

  • Juncker B, Favre JM (1989) Clonal effects in propagating oak trees via in vitro culture. Plant Cell Tissue Organ Cult 19:267–276. doi:10.1007/BF00043353

    Article  Google Scholar 

  • Kartsonas E, Papafotiou M (2007) Mother plant age and seasonal influence on in vitro propagation of Quercus euboica Pap., an endemic, rare and endangered oak species of Greece. Plant Cell Tissue Organ Cult 90:111–116. doi:10.1007/s11240-007-9232-5

    Article  CAS  Google Scholar 

  • Kleinschmit J, Meier-Dinkel A (1990) Biotechnology in forest tree improvement: trees of the future. In: Rodriguez R, Sánchez-Tamés R, Durzan DJ (eds) Plant aging: basic and applied approaches. Plenum Press, New York, pp 319–324

    Google Scholar 

  • Kumar PP, Lakshmanan P, Thorphe TA (1998) Regulation of morphogenesis in plant tissue culture by ethylene. In Vitro Cell Dev Biol Plant 34:94–103. doi:10.1007/BF02822771

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:420–427

    Google Scholar 

  • Martin KP (2002) Rapid propagation of Holostemma ada-Kodien Schult., a rare medicinal plant, through axillary bud multiplication and indirect organogenesis. Plant Cell Rep 21:112–117. doi:10.1007/s00299-002-0483-7

    Article  CAS  Google Scholar 

  • McCown BH (2000) Recalcitrance of woody and herbaceous perennials plants: dealing with genetic predeterminism. In Vitro Cell Dev Biol Plant 36:149–154. doi:10.1007/s11627-000-0030-6

    Article  Google Scholar 

  • Meier-Dinkel A, Becker B, Duckstein D (1993) Micropropagation and ex vitro rooting of several clones of late-flushing Quercus robur L. Ann Sci For 50(Suppl 1):319–322. doi:10.1051/forest:19930733

    Article  Google Scholar 

  • Pan MJ, van Staden J (1998) The use of charcoal in vitro culture—a review. Plant Growth Regul 26:155–163. doi:10.1023/A:1006119015972

    Article  CAS  Google Scholar 

  • Perrin Y, Doumas P, Lardet L, Carron M-P (1997) Endogenous cytokinins as biochemical markers of rubber-tree (Hevea brasiliensis) clone rejuvenation. Plant Cell Tissue Organ Cult 47:239–245. doi:10.1007/BF02318978

    Article  Google Scholar 

  • Puddephat IJ, Alderson PG, Wright NA (1999) In vitro root induction in axillary microshoots of Quercus robur L. Ann Appl Biol 134:233–239. doi:10.1111/j.1744-7348.1999.tb05259.x

    Article  Google Scholar 

  • Purohit VK, Tampta S, Chundra S, Vyas P, Palmi LMS, Nandi SK (2002) In vitro multiplication of Quercus leucotrichophora and Q. glauca: important Himalayan oaks. Plant Cell Tissue Organ Cult 69:121–133. doi:10.1023/A:1015296713243

    Article  CAS  Google Scholar 

  • Qin YH, Zhang SL, Zhang LX, Zhu DY, Syed A (2005) Response to in vitro strawberry to silver nitrate (AgNO3). HortScience 40:747–751

    CAS  Google Scholar 

  • Rancillac M, Klinguer A, Klinguer S (1991) Plant biotechnologies applied to a forest tree, the American red oak (Quercus rubra L.). Acta Hortic 289:341–342

    Google Scholar 

  • Reis LB, Paiva Neto VB, Toledo Picoli EA, Costa NGC, Rêgo MM, Carvalho CR, Finger FL, Otoni WC (2003) Axillary bud development of passion fruit as affected by ethylene precursor and inhibitors. In Vitro Cell Dev Biol Plant 39:618–622. doi:10.1079/IVP2003455

    Article  CAS  Google Scholar 

  • Romano A, Martins-Louçao MA (2003) Strategies to improve rooting and acclimatization of cork oak. Acta Hortic 616:275–278

    Google Scholar 

  • Romano A, Noronha C, Martins-Louçao MA (1995) Role of carbohydrates in micropropagation of cork oak. Plant Cell Tissue Organ Cult 40:159–167. doi:10.1007/BF00037670

    Article  CAS  Google Scholar 

  • Sánchez MC, San-José MC, Ballester A, Vieitez AM (1996) Requirements for in vitro rooting of Quercus robur and Q. rubra shoots derived from mature trees. Tree Physiol 16:673–680

    PubMed  Google Scholar 

  • San-José MC, Ballester A, Vieitez AM (1988) Factors affecting in vitro propagation of Quercus robur L. Tree Physiol 4:281–290

    PubMed  Google Scholar 

  • San-José MC, Vieitez AM, Ballester A (1990) Clonal propagation of juvenile and adult trees of sessile oak by tissue culture. Silvae Genet 39:50–55

    Google Scholar 

  • Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo PY, Solis-Ruiz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham ML (2005) Regeneration of Habanero pepper (Capsicum chinense Jacq.) via organogenesis. HortScience 40:1829–1831

    Google Scholar 

  • Savill PS, Kanowski PJ (1993) Tree improvement programs for European oaks: goals and strategies. Ann Sci For 50(Suppl 1):368–383. doi:10.1051/forest:19930741

    Article  Google Scholar 

  • Schlarbaum SE (1993) Growth trends and geographic variation in a Quercus alba progeny test. Ann Sci For 50(Suppl 1):425–429. doi:10.1051/forest:19930750

    Article  Google Scholar 

  • Schwarz OJ, Schlarbaum SE (1993) Axillary bud proliferation of 2 North American oak species: Quercus alba and Quercus rubra. Ann Sci For 50(Suppl 1):340–343. doi:10.1051/forest:19930737

    Article  Google Scholar 

  • Sugiyama M (1999) Organogenesis in vitro. Opin Plant Biol 2:61–64. doi:10.1016/S1369-5266(99)80012-0

    Article  CAS  Google Scholar 

  • Tampta S, Palni LMS, Purohit VK, Nandi SK (2008) In vitro propagation of brown oak (Quercus semecarpifolia Sm.) from seedling explants. In Vitro Cell Dev Biol Plant 44:136–141. doi:10.1007/s11627-008-9138-x

    Article  CAS  Google Scholar 

  • Vengadesan G, Pijut PM (2007) In vitro propagation of northern red oak (Quercus rubra L.). In Vitro Cell Dev Biol Plant 43:S46

    Google Scholar 

  • Vengadesan G, Pijut PM (2009) Somatic embryogenesis and plant regeneration of northern red oak (Quercus rubra L.). Plant Cell Tissue Organ Cult 97:141–149

    Article  Google Scholar 

  • Vidal N, Arellano G, San-José MC, Vieitez AM, Ballester A (2003) Developmental stages during the rooting of in-vitro-cultured Quercus robur shoots from material of juvenile and mature origin. Tree Physiol 23:1247–1254

    PubMed  CAS  Google Scholar 

  • Vieitez AM, San-José MC, Vieitez E (1985) In vitro plantlet regeneration from juvenile and mature Quercus robur L. J Hortic Sci 60:99–106

    Google Scholar 

  • Vieitez AM, Pintos F, San-José MC, Ballester A (1993a) In vitro shoot proliferation determined by explant orientation of juvenile and mature Quercus rubra L. Tree Physiol 12:107–117

    PubMed  Google Scholar 

  • Vieitez AM, Ferro EM, Ballester A (1993b) Micropropagation of Fagus sylvatica L. In Vitro Cell Dev Biol Plant 29:183–188. doi:10.1007/BF02632033

    Google Scholar 

  • Vieitez AM, Sánchez MC, Amo-Marco JB, Ballester A (1994) Forced flushing of branch segments as a method for obtaining reactive explants of mature Quercus robur trees for micropropagation. Plant Cell Tissue Organ Cult 37:287–295

    Google Scholar 

  • Vieitez AM, San-José MC, Sánchez C, Ballester A (2003) Micropropagation of Fagus spp. In: Jain SM, Ishii K (eds) Micropropagation of woody trees and fruits. Kluwer, Dordrecht, pp 181–215

    Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmülling T (2001) Regulation of plant growth by cytokinin. Procc Nat Acad Sci 98:10487–10492. doi:10.1073/pnas.171304098

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are given to Mrs. R. Sabel for her technical support. The study was partially funded by Foresta Capital S.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Vieitez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vieitez, A.M., Corredoira, E., Ballester, A. et al. In vitro regeneration of the important North American oak species Quercus alba, Quercus bicolor and Quercus rubra . Plant Cell Tiss Organ Cult 98, 135–145 (2009). https://doi.org/10.1007/s11240-009-9546-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9546-6

Keywords

Navigation