Skip to main content

Advertisement

Log in

Regeneration and plantlet development from somatic tissues of Aristolochia fimbriata

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Aristolochia fimbriata is a small herbaceous perennial in the basal angiosperm family Aristolochiaceae. The family contains diverse floral forms ranging from radial to monosymmetric flowers with a wide variety of insect pollinators. Additionally, Aristolochia species contain secondary metabolites that are important natural toxins and traditional medicines, and are critical to the reproduction of swallowtail butterflies. These characteristics, in combination with the small genome size and short life cycle of A. fimbriata, have prompted further development of this species as a model system to study the evolution of basal angiosperms. As a prerequisite for developing a genetic transformation procedure for Aristolochia, we developed protocols for in vitro plant multiplication, shoot organogenesis, rooting, and acclimation of tissue culture-derived plants. Two varieties of Aristolochia were multiplied in vitro and rooted with 100% efficiency. Shoot regeneration was achieved within 1 month of culture initiation from whole leaf, internodal stem, and petiole explants. The highest regeneration success (97%) was recorded for stem explants. Regenerated and rooted shoots were acclimated to greenhouse conditions and developed flowers within 4 weeks of transplanting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abe F, Nagafuji S, Yamauchi T, Okabe H, Maki J, Higo H, Akahane H, Aguilar A, Jimenez-Estrada M, Reyes-Chilpa R (2002) Trypanocidal constituents in plants 1. Evaluation of some Mexican plants for their trypanocidal activity and active constituents in Guaco, roots of Aristolochia taliscana. Biol Pharm Bull 25:1188–1191. doi:10.1248/bpb.25.1188

    Article  PubMed  CAS  Google Scholar 

  • Abubakar MS, Balogun E, Abdurahman EM, Nok AJ, Shok M, Mohammed A, Garba M (2006) Ethnomedical treatment of poisonous snakebites: plant extract neutralized Naja nigricollis venom. Pharm Biol 44:343–348. doi:10.1080/13880200600746253

    Article  Google Scholar 

  • Agrawal GK, Abe K, Yamazaki M, Miyao A, Hirochika H (2005) Conservation of the E-function for floral organ identity in rice revealed by the analysis of tissue culture-induced loss-of-function mutants of the OsMADS1 gene. Plant Mol Biol 59:125–135. doi:10.1007/s11103-005-2161-y

    Article  PubMed  CAS  Google Scholar 

  • An G, Watson BD, Chiang CC (1986) Transformation of tobacco, tomato, potato, and Arabidopsis thaliana using a binary Ti vector system. Plant Physiol 81:301–305. doi:10.1104/pp.81.1.301

    Article  PubMed  Google Scholar 

  • Banziger H, Disney R, Henry L (2006) Scuttle flies (Diptera: Phoridae) imprisoned by Aristolochia baenzigeri (Aristolochiaceae) in Thailand. Mitt Schweiz Entomol Ges 79:29–61

    Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2005) The age of the angiosperms: a molecular timescale without a clock. Evol Int J Org Evol 59:1245–1258

    CAS  Google Scholar 

  • Bent AF (2000) Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124:1540–1547. doi:10.1104/pp.124.4.1540

    Article  PubMed  CAS  Google Scholar 

  • Bharathan G, Lambert G, Galbraith D (1994) Nuclear DNA content of monocotyledons and related taxa. Am J Bot 81:381–386. doi:10.2307/2445466

    Article  Google Scholar 

  • Broussalis AM, Ferraro GE, Martino VS, Pinzon R, Coussio JD, Alvarez JC (1999) Argentine plants as potential source of insecticidal compounds. J Ethnopharmacol 67:219–223. doi:10.1016/S0378-8741(98)00216-5

    Article  PubMed  CAS  Google Scholar 

  • Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL (2006) MicroTom—a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441. doi:10.1007/s00299-005-0084-3

    Article  PubMed  CAS  Google Scholar 

  • Draper J, Mur LAJ, Jenkins G, Ghosh-Biswas GC, Bablak P, Hasterok R, Routledge APM (2001) Brachypodium distachyon. A new model system for functional genomics in grasses. Plant Physiol 127:1539–1555. doi:10.1104/pp.010196

    Article  PubMed  CAS  Google Scholar 

  • Elizabeth KM, Raju CS (2006) Antimicrobial activity of Aristolochia bracteata. Asian J Chem 18:207–211

    CAS  Google Scholar 

  • Fisher DK, Guiltinan MJ (1995) Rapid, efficient production of homozygous transgenic tobacco plants with Agrobacterium tumefaciens: a seed-to-seed protocol. Plant Mol Biol Rep 13:278–289. doi:10.1007/BF02670906

    Article  CAS  Google Scholar 

  • Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SE, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13–22. doi:10.1104/pp.000653

    Article  PubMed  CAS  Google Scholar 

  • Gadhi CA, Weber M, Mory F, Benharref A, Lion C, Jana M, Lozniewski A (1999) Antibacterial activity of Aristolochia paucinervis Pomel. J Ethnopharmacol 67:87–92. doi:10.1016/S0378-8741(98)00212-8

    Article  PubMed  CAS  Google Scholar 

  • Gadhi CA, Benharref A, Jana M, Lozniewski A (2001a) Anti-Helicobacter pylori activity of Aristolochia paucinervis Pomel extracts. J Ethnopharmacol 75:203–205. doi:10.1016/S0378-8741(01)00184-2

    Article  PubMed  CAS  Google Scholar 

  • Gadhi CA, Hatier R, Mory F, Marchal L, Weber M, Benharref A, Jana M, Lozniewski A (2001b) Bactericidal properties of the chloroform fraction from rhizomes of Aristolochia paucinervis Pomel. J Ethnopharmacol 75:207–212. doi:10.1016/S0378-8741(01)00185-4

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Stevenson DW (2000) Perianth development and systematics of Aristolochia. Flora 195:370–391

    Google Scholar 

  • Gupta RS, Dobhal MP, Dixit VP (1996) Morphometric and biochemical changes in testes of Presbytis entellus entellus Dufresne (Langur monkey) following aristolochic acid administration. Ann Biol Ludhiana 12:328–334

    Google Scholar 

  • Hall DW, Brown BV (1993) Pollination of Aristolochia littoralis (Aristolochiales: Aristolochiaceae) by males of Megaselia spp. (Diptera: Phoridae). Ann Entomol Soc Am 86:609–613

    Google Scholar 

  • Handberg K, Stougaard J (1992) Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics. Plant J 2:487–496. doi:10.1111/j.1365-313X.1992.00487.x

    Article  Google Scholar 

  • Hinou J, Demetzos C, Harvala C, Roussakis C (1990) Cytotoxic and antimicrobial principles from the roots of Aristolochia longa. Int J Crude Drug Res 28:149–151

    CAS  Google Scholar 

  • Hranjec T, Kovac A, Kos J, Mao WY, Chen JJ, Grollman AP, Jelakovic B (2005) Endemic nephropathy: the case for chronic poisoning by Aristolochia. Croat Med J 46:116–125

    PubMed  Google Scholar 

  • Husaini AM, Abdin MZ (2007) Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria × ananassa Duch. In Vitro Cell Dev Biol Plant 43:576–584. doi:10.1007/s11627-007-9048-3

    Article  CAS  Google Scholar 

  • Hwang MS, Park MS, Moon J-Y, Lee JS, Yum YN, Yoon E, Lee H, Nam KT, Lee BM, Kim SH, Yang KH (2006) Subchronic toxicity studies of the aqueous extract of Aristolochiae fructus in Sprague-Dawley rats. J Toxicol Environ Health 69:2157–2165. doi:10.1080/15287390600747965

    Article  CAS  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA, Daniell H, dePamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA 104:19369–19374. doi:10.1073/pnas.0709121104

    Article  PubMed  Google Scholar 

  • Jaramillo MA, Kramer EM (2004) APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evol Dev 6:449–458. doi:10.1111/j.1525-142X.2004.04053.x

    Article  PubMed  CAS  Google Scholar 

  • Jbilou R, Ennabili A, Sayah F (2006) Insecticidal activity of four medicinal plant extracts against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Afr J Biotechnol 5:936–940

    Google Scholar 

  • Jimenez-Ferrer JE, Perez-Teran YY, Roman-Ramos R, Tortoriello J (2005) Antitoxin activity of plants used in Mexican traditional medicine against scorpion poisoning. Phytomedicine 12:116–122. doi:10.1016/j.phymed.2003.10.001

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Soltis PS, Wall K, Soltis DE (2005) Phylogeny and domain evolution in the APETALA2-like gene family. Mol Biol Evol 23:107–120. doi:10.1093/molbev/msj014

    Article  PubMed  CAS  Google Scholar 

  • Klitzke CF, Brown KS Jr (2000) The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae). Chemoecology 10:99–102. doi:10.1007/s000490050013

    Article  CAS  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed  CAS  Google Scholar 

  • Poonam VK, Prasad AK, Parmar VS (2003) Naturally occurring aristolactams, aristolochic acids and dioxoaporphines and their biological activities. Nat Prod Rep 20:565–583. doi:10.1039/b303648k

    Article  PubMed  CAS  Google Scholar 

  • Kumar VP, Chauhan NS, Padh H, Rajani M (2006) Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol 107:182–188. doi:10.1016/j.jep.2006.03.013

    Article  PubMed  Google Scholar 

  • Kupchan SM, Doskotch RW (1962) Tumor inhibitors. I. Aristolochic acid, the active principle of Aristolochia indica. J Med Pharm Chem 5:657–659. doi:10.1021/jm01238a029

    Article  CAS  Google Scholar 

  • Lajide L, Escoubas P, Mizutani J (1993) Antifeedant activity of metabolites of Aristolochia albida against the tobacco cutworm, Spodoptera litura. J Agric Food Chem 41:669–673. doi:10.1021/jf00028a031

    Article  CAS  Google Scholar 

  • Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, dePamphilis CW (2005) Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein zone. Mol Biol Evol 22:1948–1963. doi:10.1093/molbev/msi191

    Article  PubMed  CAS  Google Scholar 

  • Lemos VS, Thomas G, Barbosa JM (1993) Pharmacological studies on Aristolochia papillaris Mast (Aristolochiaceae). J Ethnopharmacol 40:141–145. doi:10.1016/0378-8741(93)90060-I

    Article  PubMed  CAS  Google Scholar 

  • Levi M, Guchelaar HJ, Woerdenbag HJ, Zhu YP (1998) Acute hepatitis in a patient using a Chinese herbal tea—a case report. Pharm World Sci 20:43–44. doi:10.1023/A:1008698811463

    Article  PubMed  CAS  Google Scholar 

  • Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8. doi:10.1016/S0092-8674(00)80618-2

    Article  PubMed  CAS  Google Scholar 

  • Manjula S, Thomas A, Daniel B, Nair GM (1997) In vitro plant regeneration of Aristolochia indica through axillary shoot multiplication and organogenesis. Plant Cell Tissue Organ Cult 51:145–148. doi:10.1023/A:1005978125424

    Article  Google Scholar 

  • Maximova SN, Dandekar AM, Guiltinan MJ (1998) Investigation of Agrobacterium-mediated transformation of apple using green fluorescent protein: high transient expression and low stable transformation suggest that factors other than T-DNA transfer are rate-limiting. Plant Mol Biol 37:549–559. doi:10.1023/A:1006041313209

    Article  PubMed  CAS  Google Scholar 

  • McKersie BD, Murnaghan J, Bowley SR (1997) Manipulating freezing tolerance in transgenic plants. Acta Physiol Plant 19:485–495. doi:10.1007/s11738-997-0045-2

    Article  CAS  Google Scholar 

  • Meinl W, Pabel U, Osterloh-Quiroz M, Hengstler JG, Glatt H (2006) Human sulphotransferases are involved in the activation of aristolochic acids and are expressed in renal target tissue. Int J Cancer 118:1090–1097. doi:10.1002/ijc.21480

    Article  PubMed  CAS  Google Scholar 

  • Mohamed MF, Read PE, Coyne DP (1992) Dark preconditioning, CPPU, and thidiazuron promote shoot organogenesis on seedling node explants of common and faba beans. J Am Soc Hortic Sci 117:668–672

    CAS  Google Scholar 

  • Molina RV, Castello S, Garcia-Luis A, Guardiola JL (2007) Light cytokinin interactions in shoot formation in epicotyl cuttings of Troyer citrange cultured in vitro. Plant Cell Tissue Organ Cult 89:131–140. doi:10.1007/s11240-007-9221-8

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murthy BNS, Murch SJ, Saxena PK (1998) Thidiazuron: a potent regulator of in vitro plant morphogenesis. In Vitro Cell Dev Biol Plant 34:267–275. doi:10.1007/BF02822732

    Article  CAS  Google Scholar 

  • Murugan R, Shivanna KR, Rao RR (2006) Pollination biology of Aristolochia tagala, a rare species of medicinal importance. Curr Sci 91:795–798

    Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into Petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    Article  PubMed  CAS  Google Scholar 

  • Nascimento IR, Murata AT, Bortoli SA, Lopes LM (2004) Insecticidal activity of chemical constituents from Aristolochia pubescens against Anticarsia gemmatalis larvae. Pest Manag Sci 60:413–416. doi:10.1002/ps.805

    Article  PubMed  CAS  Google Scholar 

  • Nortier JL, Martinez MM, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De Pauw L, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342:1686–1692. doi:10.1056/NEJM200006083422301

    Article  PubMed  CAS  Google Scholar 

  • Otero R, Nunez V, Barona J, Fonnegra R, Jimenez SL, Osorio RG, Saldarriaga M, Diaz A (2000) Snakebites and ethnobotany in the northwest region of Colombia Part III: neutralization of the haemorrhagic effect of Bothrops atrox venom. J Ethnopharmacol 73:233–241. doi:10.1016/S0378-8741(00)00321-4

    Article  PubMed  CAS  Google Scholar 

  • Pakrashi A, Chakrabarty B (1978) Anti-oestrogenic and anti-implantation effect of aristolochic acid from Aristolochia indica (Linn). Indian J Exp Biol 16:1283–1285

    PubMed  CAS  Google Scholar 

  • Pakrashi A, Pakrasi P (1979) Anti-fertility efficacy of the plant Aristolochia indica (Linn) on mouse. Contraception 20:49–54. doi:10.1016/0010-7824(79)90043-X

    Article  PubMed  CAS  Google Scholar 

  • Petch T (1924) Notes on Aristolochia. Ann R Bot Gard Peradeniya 8:1–108

    Google Scholar 

  • Qiu Q, Liu ZH, Chen HP, Yin HL, Li LS (2000) Long-term outcome of acute renal injury induced by Aristolochia. Acta Pharmacol Sin 21:1129–1135

    PubMed  CAS  Google Scholar 

  • Rausher MD (1981) Host plant selection by Battus philenor butterflies: the roles of predation, nutrition, and plant chemistry. Ecol Monogr 51:1–20. doi:10.2307/2937304

    Article  Google Scholar 

  • Reddy RV, Reddy MH, Raju RRV (1995) Ethnobotany of Aristolochia L. Acta Bot Indica 23:291–292

    Google Scholar 

  • Remashree AB, Hariharan M, Unnikrishnan K (1997) In vitro organogenesis in Aristolochia indica (L.). Phytomorphology 47:161–165

    Google Scholar 

  • Saebo A, Krekling T, Appelgren M (1995) Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro. Plant Cell Tissue Organ Cult 41:177–185. doi:10.1007/BF00051588

    Article  Google Scholar 

  • Sakai S (2002) Aristolochia spp. (Aristolochiaceae) pollinated by flies breeding on decomposing flowers in Panama. Am J Bot 89:527–534. doi:10.3732/ajb.89.3.527

    Article  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bes M, Brizard JP, Larmande P, Ortega D, Raynal M, Portefaix M, Ouwerkerk PB, Rueb S, Delseny M, Guiderdoni E (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106:1396–1408

    PubMed  CAS  Google Scholar 

  • Sands DPA, Scott SE, Moffatt R (1997) The threatened Richmond birdwing butterfly (Ornithoptera richmondia (Gray)): a community conservation project. Mem Mus Vic 56:449–453

    Google Scholar 

  • Shafi PM, Rosamma MK, Jamil K, Reddy PS (2002) Antibacterial activity of the essential oil from Aristolochia indica. Fitoterapia 73:439–441. doi:10.1016/S0367-326X(02)00130-2

    Article  PubMed  CAS  Google Scholar 

  • Soniya EV, Sujitha M (2006) An efficient in vitro propagation of Aristolochia indica. Biol Plant 50:272–274. doi:10.1007/s10535-006-0018-0

    Article  Google Scholar 

  • Tabatabaei SJ, Yusefi M, Hajiloo J (2008) Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Sci Hortic (Amsterdam) 116:264–272. doi:10.1016/j.scienta.2007.12.008

    Article  CAS  Google Scholar 

  • Trujillo CG, Sersic AN (2006) Floral biology of Aristolochia argentina (Aristolochiaceae). Flora 201:374–382

    Google Scholar 

  • Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091. doi:10.1242/dev.01523

    Article  PubMed  CAS  Google Scholar 

  • Zahn LM, Kong HZ, Leebens-Mack JH, Kim S, Soltis PS, Landherr LL, Soltis DE, dePamphilis CW, Ma H (2005) The evolution of the SEPALLATA subfamily of MADS-Box genes: a preangiosperm origin with multiple duplications throughout angiosperm history. Genetics 169:2209–2223. doi:10.1534/genetics.104.037770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Science Foundation (NSF) grants to C. dePamphilis and H. Ma (DBI-0115684 and DBI-0638595) and to M. Guiltinan (NSF 430-47/60A), a Department of Energy (DOE) grant to H. Ma (DE-FG02-02ER15332), and by the Department of Biology and Huck Institute of Life Sciences of the Pennsylvania State University. We thank M. Guiltinan for providing the tissue culture lab and growth facility space, and for editing this manuscript. We also thank L. Rosen and Jardin Botanico, Universidade de Coimbra for providing seeds; Anthony Omeis for plant care; Brett Shook, Laura Warg, and Paula Ralph for assistance with tissue culture experiments; Guanfang Wang, Zhe Chen, and Yan Zhang for statistical support, and Dr. Stefan Wanke for valuable discussion. Our initial efforts in developing a micropropagation system for Aristolochia fimbriata were aided by the unpublished findings of C. Bravo, G. Yormann, and B. Llorente, recorded in Acta Horticulturae conference proceedings (1999).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siela N. Maximova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bliss, B.J., Landherr, L., dePamphilis, C.W. et al. Regeneration and plantlet development from somatic tissues of Aristolochia fimbriata . Plant Cell Tiss Organ Cult 98, 105–114 (2009). https://doi.org/10.1007/s11240-009-9543-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9543-9

Keywords

Navigation