Skip to main content
Log in

Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Auxin is a plant hormone that regulates many processes of plant growth such as apical dominance, cell growth, adventitious rooting, and fruit and seed development. Expression of a family of YUCCA genes important for auxin biosynthesis has been shown to be spatially and temporally regulated in Arabidopsis. In this study, we report on the identification of 12 YUCCA genes from the completely sequenced Populus trichocarpa genome database and characterized them by comparing them with Arabidopsis YUCCA genes. The Populus YUCCA genes are distributed on eight chromosomes. All Populus and Arabidopsis YUCCA genes can be divided into two phylogenetic groups, one of which can be divided into two subgroups. Populus YUCCA genes are expressed in the shoot tip, immature and mature leaf, young root, stem, and bark tissues in an tissue-specific manner. Transcript accumulation of the Populus YUCCA genes is reduced by exogenous applications of various plant growth regulators except auxin. Steady-state mRNA levels of different Populus YUCCA genes vary considerably depending on the experimental treatments. These results suggest that, similar to the Arabidopsis and rice YUCCA genes, the Populus YUCCA genes may also have diversified roles in Populus growth and development, and their expression may be regulated in a complex manner by developmental and environmental cues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BA:

6-Benzylaminopurine

BR:

Brassinosteroids

GA:

Gibberellic acid

JA:

Jasmonic acid

IAA:

Indole-3-acetic acid

PEG:

Polyethylene glycol

SA:

Salicylic acid

SF:

Subfamily

References

  • Bailey TL, Williams N, Misleh C, Li WW (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34:369–373. doi:10.1093/nar/gkl198

    Article  Google Scholar 

  • Bao F, Shen J, Brady SR, Muday GK, Asami T, Yang Z (2004) Brassinosteroids interact with auxin to promote lateral root development in Arabidopsis. Plant Physiol 134:1624–1631. doi:10.1104/pp.103.036897

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Onckelen HV, Montagu MV, Inze D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419

    Article  PubMed  CAS  Google Scholar 

  • Brunner AM, Yakovlev IA, Strauss SH (2004) Validating internal controls for quantitative plant gene expression studies. BMC Plant Biol 4:14. doi:10.1186/1471-2229-4-14

    Article  PubMed  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2006) Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis. Genes Dev 20:1790–1799. doi:10.1101/gad.1415106

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Dai X, Zhao Y (2007a) Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19:2430–2439. doi:10.1105/tpc.107.053009

    Article  PubMed  CAS  Google Scholar 

  • Cheng Y, Qin G, Dai X, Zhao Y (2007b) NPY1, a BTB-NPH3-like protein, plays a critical role in auxin-regulated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 104:18825–18829. doi:10.1073/pnas.0708506104

    Article  PubMed  CAS  Google Scholar 

  • Davies PJ (2004) The plant hormones: their nature, occurrence, and functions. In: Davies PJ (ed) Plant hormones, biosynthesis, signal transduction, action!, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • Delarue M, Prinsen E, Van Onckelen H, Caboche M, Bellini C (1998) Sur2 mutations of Arabidopsis thaliana define a new locus involved in the control of auxin homeostasis. Plant J 14:603–611. doi:10.1046/j.1365-313X.1998.00163.x

    Article  PubMed  CAS  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res (April 19) 36(2):w465–w469

    Article  CAS  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797. doi:10.1093/nar/gkh340

    Article  PubMed  CAS  Google Scholar 

  • Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563. doi:10.1104/pp.106.084871

    Article  PubMed  CAS  Google Scholar 

  • Fujino K, Matsuda Y, Ozawa K, Nishimura T, Koshiba T, Fraaije MW, Sekiguchi H (2008) NARROW LEAF 7 controls leaf shape mediated by auxin in rice. Mol Genet Genomics 279:499–507

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300. doi:10.1093/nar/27.1.297

    Article  PubMed  CAS  Google Scholar 

  • Hull AK, Vij R, Celenza JL (2000) Arabidopsis cytochrome P450s that catalyze the first step of tryptophan-dependent indole-3-acetic acid biosynthesis. Proc Natl Acad Sci USA 97:2379–2384. doi:10.1073/pnas.040569997

    Article  PubMed  CAS  Google Scholar 

  • Kim JI, Sharkhuu A, Jin JB, Li P, Jeong JC, Baek D, Lee SY, Blakeslee JJ, Murphy AS, Bohnert HJ, Hasegawa PM, Yun D-J, Bressan RA (2007) Yucca6, a dominant mutation in Arabidopsis, affects auxin accumulation and auxin-related phenotypes. Plant Physiol 145:722–735. doi:10.1104/pp.107.104935

    Article  PubMed  CAS  Google Scholar 

  • Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582. doi:10.1016/j.tplants.2004.10.010

    Article  PubMed  CAS  Google Scholar 

  • McSteen P, Zhao Y (2008) Plant hormones and signaling: common themes and new developments. Dev Cell 14:467–473. doi:10.1016/j.devcel.2008.03.013

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Normanly J, Slovin JP, Cohen JD (2004) Auxin biosynthesis. In: Davies PJ (ed) Plant hormones: biosynthesis, signal transduction, action!, 3rd edn. Kluwer Academic Publishers, Dordrecht, pp 36–62

    Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time PCR data. Neurosci Lett 339:62–66. doi:10.1016/S0304-3940(02)01423-4

    Article  PubMed  CAS  Google Scholar 

  • Ruijter JM, Ramakers C, Hoogaars W, Bakker O, van den Hoff MJB, Karlen Y, Moorman AFM (2009) Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res 37:e45

    Article  PubMed  CAS  Google Scholar 

  • Sauer M, Balla J, Luschnig C, Wisniewska J, Reinohl V, Friml J, Benkova E (2006) Canalization of auxin flow by Aux/IAA-ARF-dependent feedback regulation of PIN polarity. Genes Dev 20:2902–2911. doi:10.1101/gad.390806

    Article  PubMed  CAS  Google Scholar 

  • Tobena-Santamaria R, Bliek M, Ljung K, Sandberg G, Mol JNM, Souer E, Koes R (2002) FLOOZY of petunia is a flavin mono-oxygenase-like protein required for the specification of leaf and flower architecture. Genes Dev 16:753–763. doi:10.1101/gad.219502

    Article  PubMed  CAS  Google Scholar 

  • Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen G-L, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Dejardin A, dePamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjarvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leple J-C, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai C-J, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D (2006) The genome of western black cottonwood, Populus trichocarpa (Torr. & Gray ex Brayshaw). Science 313:1596–1603. doi:10.1126/science.1128691

    Article  PubMed  CAS  Google Scholar 

  • Udvardi MK, Czechowski T, Scheible W-R (2008) Eleven golden rules of quantitative RT-PCR. Plant Cell 20:1736–1737

    Article  PubMed  CAS  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:34.1–34.11

    Article  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78. doi:10.1093/jhered/93.1.77

    Article  PubMed  CAS  Google Scholar 

  • Weiss D, Ori N (2007) Mechanisms of cross talk between gibberellin and other hormones. Plant Physiol 144:1240–1246. doi:10.1104/pp.107.100370

    Article  PubMed  CAS  Google Scholar 

  • Woo YM, Park HJ, Su’udi M, Yang J-I, Park J-J, Back K, Park Y-M, An G (2007) Constitutively wilted 1, a member of the rice YUCCA gene family, is required for maintaining water homeostasis and an appropriate root to shoot ratio. Plant Mol Biol 65:125–136. doi:10.1007/s11103-007-9203-6

    Article  PubMed  CAS  Google Scholar 

  • Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot (Lond) 95:707–735. doi:10.1093/aob/mci083

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kamiya N, Morinaka Y, Matsuoka M, Sazuka T (2007) Auxin biosynthesis by the YUCCA genes in rice. Plant Physiol 143:1362–1371. doi:10.1104/pp.106.091561

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y (2008) The role of local biosynthesis of auxin and cytokinin in plant development. Curr Opin Plant Biol 11:16–22. doi:10.1016/j.pbi.2007.10.008

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309. doi:10.1126/science.291.5502.306

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Hull AK, Gupta NR, Goss KA, Alonso J, Ecker JR, Normanly J, Chory J, Celenza JL (2002) Trp-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 and CYP79B3. Genes Dev 16:3100–3112. doi:10.1101/gad.1035402

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research in the Cheng Lab was supported in part by DOE-Bioenergy Center grant and by Tennessee Agricultural Experiment Station. The BioEnergy Science Center is a US Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Zong-Ming (Max).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, X., Kang, Bg., Osburn, L.D. et al. Identification of the flavin-dependent monooxygenase-encoding YUCCA gene family in Populus trichocarpa and their expression in vegetative tissues and in response to hormone and environmental stresses. Plant Cell Tiss Organ Cult 97, 271–283 (2009). https://doi.org/10.1007/s11240-009-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-009-9526-x

Keywords

Navigation