Skip to main content

Advertisement

Log in

Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Capsicum chinense is a recalcitrant species for in vitro morphogenesis, and up to date there is no efficient system for genetic transformation and regeneration of this species via somatic embryogenesis. Here, we carried out an in vitro transformation of C. chinense via Agrobacterium tumefaciens co-cultivation with a system that expresses the heterologous gene WUSCHEL from Arabidopsis thaliana. WUSCHEL has been shown to promote the transition from vegetative to embryogenic state when overexpressed. We tested if the expression of WUSCHEL in C. chinense would promote an embryogenic response in this species. After 15 days of induction, the segments of transformed stems begun to form globular structures, suggesting that heterologus WUSCHEL was active and involved in the process of morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

6-Benzylaminopurine

IAA:

Indoleacetic acid

NAA:

Naphthaleneacetic acid

MS:

Murashige and Skoog

PCR:

Polymerase chain reaction

SDS:

Sodium dodecyl sulfate

3R:

BAP + IAA + NAA

References

  • Arroyo-Herrera A, Ku-González A, Canche-Moo R, Quiróz-Figueroa FR, Loyola Vargas V, Rodríguez Zapata LC, Burgeff D’Hondt C, Suárez-Solís VM, Castaño E (2008) Expression of WUSCHEL in Coffea canephora causes ectopic morphogenesis and increases somatic embryogenesis. Plant Cell Tissue Organ Cult 94:171–180. doi:10.1007/s11240-008-9401-1

    Article  Google Scholar 

  • Binzel ML, Sankhla N, Joshi S, Sankhla D (1996) Induction of direct somatic embryogenesis and plant regeneration in pepper (Capsicum annuum L.). Plant Cell Rep 15:536–540. doi:10.1007/BF00232989

    Article  CAS  Google Scholar 

  • Buyukalaca S, Mavituna F (1996) Somatic embryogenesis and plant regeneration of pepper in liquid media. Plant Cell Tissue Organ Cult 46:227–235. doi:10.1007/BF02307099

    Article  CAS  Google Scholar 

  • Cai W, Rong-Xiang F, Feng-Li Z, Jiu-Chun Z, Xiaoying CH, Gui-Ling W, Ke-Qiang M, Hong-Sheng S, Xu W, Yue-Ren l (2002) Virus-resistant Chili pepper produced by Agrobacterium speciesmediated transformation. In: Khachatourians G, Hughen Mc, Scorza R, Nip WK, Hui YH (eds) Transgenic plants and crops. Marcel Dekker, Inc., NY, pp 563–577

    Google Scholar 

  • Cai WQ, Fang X, Shang HS, Wang X, Mang KQ (2003) Development of CMV- and TMV- resistant transgenic chilli pepper: field performance and biosafety assessment. Mol Breed 11:25–35. doi:10.1023/A:1022655204552

    Article  Google Scholar 

  • Canche-Moo R, Ku-Gonzalez A, Burgeff C, Loyola-Vargas V, Rodriguez-Zapata LC, Castaño E (2006) Genetic transformation of Coffea canephora by vacuum infiltration. Plant Cell Tissue Organ Cult 84:373–377. doi:10.1007/s11240-005-9036-4

    Article  Google Scholar 

  • Dabauza M, Peña l (2003) Response of sweet pepper (Capsicum annuum L.) genotypes to Agrobacterium tumefaciens as a means of selecting proper vectors for genetic transformation. J Hortic Sci Biotechnol 78:65–72

    CAS  Google Scholar 

  • Gallie DR, Lucas WJ, Walbot V (1989) Visualizing mRNA expression in plant protoplasts: factors influencing efficient mRNA uptake and translation. Plant Cell 1:303–311

    Article  Google Scholar 

  • Gallois JL, Woodward C, Reddy GV, Sablowski R (2002) Combined SHOOT MERISTEMLESS and WUSCHEL trigger ectopic organogenesis in Arabidopsis. Development 129:3207–3217

    PubMed  CAS  Google Scholar 

  • Gallois JL, Nora FR, Mizukami Y, Sablowski R (2004) WUSCHEL induces shoot stem cell activity and developmental plasticity in the root meristem. Genes Dev 18:375–380. doi:10.1101/gad.291204

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Estrella L, Simpson J, Martínez-Trujillo M (2004) Transgenic plants. An historical perspective. In: Peña L (ed) Transgenic plants methods and protocols, vol 286. Humana Press, Totowa, NJ, pp 3–31

    Chapter  Google Scholar 

  • Lee HY, Kim HS, Kim JY, Jung M, Park YS, Lee JS, Choi SH, Her NH, Lee JH, Hyung NI, Lee CH, Yang SG, Harn CH (2004) A new selection meted for pepper transformation: callus-mediated shoot formation. Genetic Transformation and Hibridization. Plant Cell Rep 23:50–58

    PubMed  CAS  Google Scholar 

  • Li D, Zhao K, Xie B, Zhang B, Luo K (2003) Establishment of a highly efficient transformation system for pepper (Capsicum annuum L.). Plant Cell Rep 21:785–788. doi:10.1007/s00299-003-0581-1

    PubMed  CAS  Google Scholar 

  • Liu W, Parrot WA, Hildebrand DF, Collins GB, Williams EG (1990) Agrobacterium induced gall formation in bell pepper (Capsicum annuum L.) and formation of shoot-like structures expressing introduced genes. Plant Cell Rep 9:360–364

    CAS  Google Scholar 

  • López-Puc G, Canto-Flick A, Barredo-Pool F, Zapata-Castillo P, Peniche-Montalvo M, Barahona-Pérez F, Iglesias-Andreu l, Santana-Buzzy N (2006) Direct somatic embryogenesis: a highly efficient protocol for in vitro regeneration of habanero pepper (Capscium chinense Jacq.). HortScience 41(7):1645–1650

    Google Scholar 

  • Manoharan M, Sree CS, Lakshmi S (1998) Agrobacterium mediated genetic transformation in hot chilli (Capsicum annuum L. var Pusa jwala). Plant Science 131:77–83 PII S0168-9452(97)00231-8

    Article  CAS  Google Scholar 

  • Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T (1998) Role of WUSCHEL in regulating stem cell fate in Arabidopsis shoot meristem. Cell 95:805–815. doi:10.1016/S0092-8674(00)81703-1

    Article  PubMed  CAS  Google Scholar 

  • Mihalka V, Fari M, Szasz A, Balazs E, Nagy I (2000) Optimised protocols for efficient plant regeneration and gene transfer in pepper (Capsicum annum L.). J Plant Biotechnol 2(3):143–149

    Google Scholar 

  • Mihalka V, Balazs E, Nagy I (2003) Binary transformation systems based on “shooter” mutants of Agrobacterium tumefaciens. A simple, efficient and universal gene transfer technology that permits marker gene elimination. Plant Cell Rep 21:778–784. doi:10.1007/s00299-003-0597-6

    PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Noriko K, Hiroshi N, Atsushi M, Yutaka S, Makoto M (2003) Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem. Plant J 35:429–441. doi:10.1046/j.1365-313X.2003.01816.x

    Article  CAS  Google Scholar 

  • Ochoa-Alejo N, Ramírez-Malagon R (2001) Invited review. In vitro chilli pepper biotechnology. In Vitro Cell Dev Biol 37:701–709. doi:10.1079/IVP2001216

    Article  CAS  Google Scholar 

  • Romero-Pozueta J, Houlne G, Cañas L, Schantz R, Chamarro J (2001) Enhanced regeneration of tomato and pepper seedling plants explants for Agrobacterium-mediated transformation. Plant Cell Tissue Organ Cult 67:173–180. doi:10.1023/A:1011997926381

    Article  Google Scholar 

  • Santana-Buzzy N, Canto-Flick A, Barahona-Pérez F, Montalvo-Peniche MC, Zapata-Castillo P, Solís-Ruíz A, Zaldívar-Collí A, Gutiérrez-Alonso O, Miranda-Ham L (2005) Regeneration of habanero pepper (Capsicum chinense Jacq) via organogenesis. HortScience 40(6):1829–1831

    Google Scholar 

  • Shin R, Han JH, Lee GJ, Peak KH (2002a) The potencial use of viral coat protein genes as transgene screening marker and multiple virus resistance of pepper plants coexpressing coat proteins of cucumber mosaic virus and tomato mosaic virus. Transgenic Res 11:215–219. doi:10.1023/A:1015200622716

    Article  PubMed  CAS  Google Scholar 

  • Shin R, Park J, An JM, Paek KH (2002b) Ectopic expression of Tsi1 in transgenic hot pepper plants enhaces host resistance to viral, bacterial, and oomycete pahogens. The American Phytopathological Society. MPMI, vol 15(10), pp 983–989, no.M-2002-0812-02R

  • Shivegowda T, Mythili JB, Anand l, Saipradad G, Ramanjini Gowda , Gowda TK (2002) In vitro regeneration and transformation in chilli pepper (Capsicum annuum L.). J Hortic Sci Biotechnol 77(5):629–634

    CAS  Google Scholar 

  • Venkataiah P, Christopher T, Subhash K (2001) Plant regeneration and Agrobacterium-mediated genetic transformation in tour Capsicum species. Capsicum Eggplant Newslett 20:68–71

    Google Scholar 

  • Yu-Xian X, Wen-Jun OY, Yi-Feng Z, Zhang-Liang CH (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75. doi:10.1007/BF01275453

    Article  Google Scholar 

  • Zhu Y, Ou-Yang WJ, Zhang YF, Chen ZL (1996) Transgenic sweet pepper plants from Agrobacterium mediated transformation. Plant Cell Rep 16:71–75. doi:10.1007/BF01275453

    Article  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24(2):265–273. doi:10.1046/j.1365-313x.2000.00868.x

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Frugis G, Chua NH (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30(3):349–359. doi:10.1046/j.1365-313X.2002.01289.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We like to thank Dirección de Intercambio Academico de la Secretaria de Relaciones Exteriores from Mexico and Centro de Investigaciones Cientificas de Yucatan. Also the tecnical help of Angela Ku Gonzalez.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Castaño.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Solís-Ramos, L.Y., González-Estrada, T., Nahuath-Dzib, S. et al. Overexpression of WUSCHEL in C. chinense causes ectopic morphogenesis. Plant Cell Tiss Organ Cult 96, 279–287 (2009). https://doi.org/10.1007/s11240-008-9485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9485-7

Keywords

Navigation