Skip to main content
Log in

Rapid induction of Agrobacterium tumefaciens-mediated transgenic roots directly from adventitious roots in Panax ginseng

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

Root segments from seedlings of Panax ginseng produced adventitious roots directly when cultured on 1/2 MS solid medium lacking NH4NO3 and containing 3.0 mg l−1 IBA. Using this adventitious root formation, we developed rapid and efficient transgenic root formation directly from adventitious root segments in P. ginseng. Root segments were co-cultivated with Agrobacterium tumefaciens (GV3101) caring β-glucuronidase (GUS) gene. Putative transgenic adventitious roots were formed directly from root segments on medium with 400 mg l−1 cefotaxime and 50 mg l−1 kanamycin. Kanamycin resistant adventitious roots were selected and proliferated as individual lines by subculturing on medium with 300 mg l−1 cefotaxime and 50 mg l−1 kanamycin at two weeks subculture interval. Frequency of transient and stable expression of GUS gene was enhanced by acetosyringon (50 mg l−1) treatment. Integration of transgene into the plants was confirmed by the X-gluc reaction, PCR and Southern analysis. Production of transgenic plants was achieved via somatic embryogenesis from the embryogenic callus derived from independent lines of adventitious roots. The protocol for rapid induction of transgenic adventitious roots directly from adventitious roots can be applied for a new Agrobacterium tumefaciens-mediated genetic transformation protocol in P. ginseng.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Choi YE, Yang DC, Yoon ES, Choi KT (1999) High-efficiency plant production via direct somatic single embryogenesis from preplasmolysed cotyledons of Panax ginseng and possible dormancy of somatic embryos. Plant Cell Rep 18:493–499. doi:10.1007/s002990050610

    Article  CAS  Google Scholar 

  • Choi SM, Son SH, Yun SR, Kwon OW, Seon JH, Paek KY (2000) Pilot- scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell Tissue Organ Cult 62:187–193. doi:10.1023/A:1006412203197

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Kusano T, Sano H (2001) Rapid and efficient Agrobacterium-mediated genetic transformation by plasmolyzing pretreatment of cotyledons in Panax ginseng. Plant Cell Rep 20:616–621. doi:10.1007/s002990100377

    Article  CAS  Google Scholar 

  • Choi YE, Jeong JH, In JK, Yang DC (2003) Production of herbicide-resistant transgenic Panax ginseng through the introduction of phosphinotricin acetyl transferase gene and successful soil transfer. Plant Cell Rep 21:563–568. doi:10.1007/s00299-003-0630-9

    Article  PubMed  CAS  Google Scholar 

  • Choi YE, Kim YS, Paek KY (2006) Types and designs of bioreactors for hairy root culture. In: Gupta SD, Ibaraki Y (eds) Plant Tissue Culture Engineering. Springer, Dordrecht, pp 161–172

    Google Scholar 

  • Flores HE, Hoy MW, Puckard JJ (1987) Secondary metabolites from root cultures. Trends Biotechnol 5:64–69. doi:10.1016/S0167-7799(87)80013-6

    Article  CAS  Google Scholar 

  • Han JY, Kwon YS, Yang DC, Jung YR, Choi YE (2006a) Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng. Plant Cell Physiol 47:1653–1662. doi:10.1093/pcp/pcl032

    Article  PubMed  CAS  Google Scholar 

  • Han JY, Jung SJ, Kim SW, Kwon YS, Yi MJ, Yi JS, Choi YE (2006b) Induction of adventitious roots, analysis of ginsenoside and genes involved in triterpene biosynthesis in Panax ginseng. J Plant Biol 49:26–33

    Article  CAS  Google Scholar 

  • Hu C, Chee PP, Chee KPP, Chesney RH, Zhou JH, Miller PD, O’brien WT (1990) Intrinsic GUS-like activities in seed plants. Plant Cell Rep 9:1–5. doi:10.1007/BF00232123

    Article  CAS  Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jeong GT, Park DH, Hwang B, Woo JC (2003) Comparison of growth characteristics of Panax ginseng hairy roots in various bioreactors. Appl Biochem Biotechnol 107:493–503. doi:10.1385/ABAB:107:1-3:493

    Article  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of the TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396. doi:10.1007/BF00331014

    Article  CAS  Google Scholar 

  • Lee HS, Kim SW, Lee KW, Eriksson T, Liu JR (1995) Agrobacterium-mediated transformation of ginseng (Panax ginseng) and mitotic stability of the inserted beta-glucuronidase gene in regenerants from isolated protoplasts. Plant Cell Rep 14:545–549. doi:10.1007/BF00231935

    Article  CAS  Google Scholar 

  • Lee MH, Jeong JH, Seo JW, Shin CG, Kim YS, In JG, Yang DC, Yi JS, Choi YE (2004) Enhanced triterpene and phytosterol biosynthesis in Panax ginseng overexpressing squalene synthase gene. Plant Cell Physiol 45:976–984. doi:10.1093/pcp/pch126

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Ohta S, Mita S, Hattori T, Nakamura K (1990) Construction and expression in tobacco of a β-glucuronidase (GUS) reporter gene containing an intron within the coding sequence. Plant Cell Physiol 31:805–813

    CAS  Google Scholar 

  • Shanks JV, Morgan J (1999) Plant ‘hairy root’ culture. Curr Opin Biotechnol 10:151–155. doi:10.1016/S0958-1669(99)80026-3

    Article  PubMed  CAS  Google Scholar 

  • Vogler BK, Pittler MH, Ernst E (1999) The efficacy of ginseng. A systematic review of randomised clinical trials. Eur J Clin Pharmacol 55:567–575. doi:10.1007/s002280050674

    Article  PubMed  CAS  Google Scholar 

  • White FF, Taylor BH, Huffman GA, Gordon MP, Nester EW (1985) Molecular and genetic analysis of the transferred DNA regions of the root-inducing plasmid of Agrobacterium rhizogenes. J Bacteriol 164:33–44

    PubMed  CAS  Google Scholar 

  • Yang DC, Choi YE (2000) Production of transgenic plants of Panax ginseng from Agrobacterium-transformed hairy roots. Plant Cell Rep 19:491–496. doi:10.1007/s002990050761

    Article  CAS  Google Scholar 

  • Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Rep 6:449–453

    CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by Biogreen 21, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Eui Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, J.Y., Choi, Y.E. Rapid induction of Agrobacterium tumefaciens-mediated transgenic roots directly from adventitious roots in Panax ginseng . Plant Cell Tiss Organ Cult 96, 143–149 (2009). https://doi.org/10.1007/s11240-008-9470-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9470-1

Keywords

Navigation