Skip to main content
Log in

Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

Plant cell cultures are a suitable model system for investigation of the physiological mechanisms of tolerance to environmental stress. We have determined the effects of Cd (0.1 and 0.2 mM CdCl2) and Ni (0.075 and 0.75 mM NiCl2) on Nicotiana tabacum L. cv. Bright Yellow (TBY-2) cell suspension cultures over a 72-h period. Inhibition of growth, loss of cell viability and lipid peroxidation occurred, in general, only when the TBY-2 cells were grown at 0.2 mM CdCl2 and at 0.75 mM NiCl2. At 0.1 mM CdCl2, a significant increase in growth was determined at the end of the experiment. Increases in the activities of all of the four enzymatic antioxidant defence systems tested, were induced by the two concentrations of Cd and Ni, but at different times during the period of metal exposure. Overall, the cellular antioxidant responses to Cd and Ni were similar and were apparently sufficient to avoid oxidative stress at the lower concentrations of Cd and Ni. The activities of glutathione reductase and glutathione S-transferase increased early but transiently, whereas the activities of catalase and guaiacol peroxidase increased in the latter half of the experimental period. Therefore it is likely that the metabolism of reduced glutathione was enhanced during the initial onset of the stress, while catalase and guaiacol-type peroxidase appeared to play a more important role in the antioxidant response once the stress became severe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Cd:

Cadmium

Ni:

Nickel

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

APX:

Ascorbate peroxidase

CAT:

Catalase

GPOX:

Guaiacol-type peroxidase

GSH:

Reduced glutathione

GSSG:

Oxidized glutathione

GR:

Glutathione reductase

EDTA:

Ethylenediaminetetracetic acid

TBARS:

Thiobarbituric acid reactive substances

MDA:

Malondialdehyde

GST:

Glutathione S-transferases

DHAR:

Dehydroascorbate reductase

MDHAR:

Monodehydroascorbate reductase

References

  • Asada K (1999) The water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Azevedo RA, Alas RM, Smith RJ, Lea PJ (1998) Response of antioxidant enzymes to transfer from elevated carbon dioxide to air and ozone fumigation, in the leaves and roots of wild-type and a catalase-deficient mutant of barley. Physiol Plant 104:280–292

    Article  CAS  Google Scholar 

  • Bai C, Reilly CC, Bruce W (2006) Wood nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant Physiol 140:433–443

    Article  PubMed  CAS  Google Scholar 

  • Basantani M, Srivastava A (2007) Plant glutathione transferases—a decade falls short. Can J Bot 85:443–456

    Article  CAS  Google Scholar 

  • Ben Ammar W, Nouairi I, Zarrouk M, Jemal F (2007) Cadmium stress induces changes in the lipid composition and biosynthesis in tomato (Lycopersicon esculentum Mill.) leaves. Plant Growth Regul 53:75–85

    Article  CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Berton RS, Pires AMM, de Andrade SAL, de Abreu CA, Ambrosano EJ, da Silveira APD (2006) Nickel toxicity in common bean plants and effects on soil microbiota. Pesqui Agropecu Bras 41:1305–1312

    Google Scholar 

  • Boominathan R, Doran PM (2002) Ni-induced oxidative stress in roots of the Ni hyperaccumulator, Alyssum bertolonii. New Phytol 156:205–215

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–259

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ, Baldwin LA (2003) Inorganics and hormesis. Crit Rev Toxicol 33:215–304

    Article  PubMed  CAS  Google Scholar 

  • Chiancone B, Tassoni A, Bagni N, Germana MA (2006) Effect of polyamines on in vitro anther culture of Citrus clementina Hort. Ex. Tan. Plant Cell Tissue Organ Cult 87:145–153

    Article  CAS  Google Scholar 

  • Dalla Vecchia F, La Rocca N, Moro I, De Faveri S, Andreoli C, Rascio N (2005) Morphogenetic, ultrastructural and physiological damages suffered by submerged leaves of Elodea canadensis exposed to cadmium. Plant Sci 168:329–338

    Article  CAS  Google Scholar 

  • Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2006) Lipid peroxidation and antioxidant enzyme activities of Euphorbia milii hyperhydric shoots. Environ Exp Bot 58:93–99

    Article  CAS  Google Scholar 

  • Durcekova K, Huttova J, Mistrik I, Olle M, Tamas L (2007) Cadmium induces premature xylogenesis in barley roots. Plant Soil 290:61–68

    Article  CAS  Google Scholar 

  • Fojta M, Fojtova M, Havran L, Pivonkova H, Dorcak V, Sestakova I (2006) Electrochemical monitoring of phytochelatin accumulation in Nicotiana tabacum cells exposed to sub-cytotoxic and cytotoxic levels of cadmium. Anal Chim Acta 558:171–178

    Article  CAS  Google Scholar 

  • Fornazier RF, Ferreira RR, Pereira GJG, Molina SMG, Smith RJ, Lea PJ, Azevedo RA (2002) Cadmium stress in sugar cane callus cultures: effect on antioxidant enzymes. Plant Cell Tissue Organ Cult 75:125–131

    Article  Google Scholar 

  • Foyer CH, Noctor G (2005) Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056–1071

    Article  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007a) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals 20:27–36

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Sklodowska M (2007b) Relations between tocopherol, chlorophyll and lipid peroxides contents in shoots of Ni-treated wheat. J Plant Physiol 164:364–366

    Article  PubMed  CAS  Google Scholar 

  • Gajewska E, Sklodowska M, Slaba M, Mazur J (2006a) Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biol Plant 50:653–659

    Article  CAS  Google Scholar 

  • Gajewska E, Slaba M, Andrzejewska R, Sklodowska M (2006b) Nickel-induced inhibition of wheat root growth is related to H2O2 production, but not to lipid peroxidation. Plant Growth Regul 49:95–103

    CAS  Google Scholar 

  • Garcia JS, Gratão PL, Azevedo RA, Arruda MAZ (2006) Metal contamination effects on sunflower (Helianthus annuus L.) growth and protein expression in leaves during development. J Agric Food Chem 54:8623–8630

    Article  PubMed  CAS  Google Scholar 

  • Garnier L, Simon-Plas F, Thuleau P, Agnel JP, Blein JP, Ranjeva R, Montillet JL (2006) Cadmium affects tobacco cells by a series of three waves of reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ 29:1956–1969

    Article  PubMed  CAS  Google Scholar 

  • Ghanati F, Ishka MR (2006) Improvement of antioxidant system and decrease of lignin by nickel treatment in tea plant. J Plant Nutr 29:1649–1661

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Gratão PL, Gaziola SA, Mazzafera P, Lea PJ, Azevedo RA (2007) Selenium-induced oxidative stress in coffee cell suspension cultures. Funct Plant Biol 34:449–456

    Article  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006a) Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol Biochem 44:420–429

    Article  PubMed  CAS  Google Scholar 

  • Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA (2006b) Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65:1330–1337

    Article  PubMed  CAS  Google Scholar 

  • Gratão PL, Polle A, Lea PJ, Azevedo RA (2005) Making the life of heavy metal-stressed plants a little easier. Funct Plant Biol 32:481–494

    Article  CAS  Google Scholar 

  • Groppa MD, Benavides MP (2008) Polyamines and abiotic stress: recent advances. Amino Acids 34:35–45

    Article  PubMed  CAS  Google Scholar 

  • Groppa MD, Ianuzzo MP, Tomaro ML, Benavides MP (2007) Polyamine metabolism in sunflower plants under long-term cadmium or copper stress. Amino Acids 32:265–275

    Article  PubMed  CAS  Google Scholar 

  • Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    PubMed  CAS  Google Scholar 

  • Hancock J, Desikan R, Harrison J, Bright J, Hooley R, Neill S (2006) Doing the unexpected: proteins involved in hydrogen peroxide perception. J Exp Bot 57:1711–1718

    Article  PubMed  CAS  Google Scholar 

  • Hassan IA (2006) Physiological and biochemical response of potato (Solanum tuberosum L. cv. Kara) to O-3 and antioxidant chemicals: possible roles of antioxidant enzymes. Ann Appl Biol 148:197–206

    Article  CAS  Google Scholar 

  • Hsu YT, Kao CH (2007) Cadmium-induced oxidative damage in rice leaves is reduced by polyamines. Plant Soil 291:27–37

    Article  CAS  Google Scholar 

  • Jones MA, Raymond MJ, Yang Z, Smirnoff N (2007) NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase. J Exp Bot 58:1261–1270

    Article  PubMed  CAS  Google Scholar 

  • Kevresan S, Petrovic N, Popovic M, Kandrac J (2001) Nitrogen and protein metabolism in young pea plants as affected by different concentrations of nickel, cadmium, lead, and molybdenum. J Plant Physiol 24:1633–1644

    CAS  Google Scholar 

  • Kim YH, Kim Y, Cho E, Kwak S, Know S, Bae J, Lee B, Men B, Huh GH (2004) Alterations in intracellular and extracellular activities of antioxidant enzymes during suspension culture of sweet potato. Phytochemistry 65:2471–2476

    Article  PubMed  CAS  Google Scholar 

  • Kirda C, Topcu S, Cetin M, Dasgan HY, Kaman H, Topaloglu F, Derici MR, Ekici B (2007) Prospects of partial root zone irrigation for increasing irrigation water use efficiency of major crops in the Mediterranean region. Ann Appl Biol 150:281–291

    Article  Google Scholar 

  • Kukkola E, Rautio P, Huttunen S (2000) Stress indications in copper and nickel-exposed Scots pine seedlings. Environ Exp Bot 43:197–210

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Azevedo RA (2007) Nitrogen use efficiency. II. Amino acid metabolism. Ann Appl Biol 151:269–275

    Article  CAS  Google Scholar 

  • Li J, Jin H (2007) Regulation of brassinosteroid signalling. Trends Plant Sci 12:37–41

    Article  PubMed  CAS  Google Scholar 

  • Liu CP, Shen ZG, Li XD (2007) Accumulation and detoxification of cadmium in Brassica pekinensis and B. chinensis. Biol Plant 51:116–120

    Article  CAS  Google Scholar 

  • Maheshwari R, Dubey RS (2007) Nickel toxicity inhibits ribonuclease and protease activities in rice seedlings: protective effects of proline. Plant Growth Regul 51:231–243

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  PubMed  CAS  Google Scholar 

  • Mobin M, Khan NA (2007) Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. J Plant Physiol 164:601–610

    Article  PubMed  CAS  Google Scholar 

  • Moldes CA, Medici LO, Abrahão OS, Tsai SM, Azevedo RA (2008) Biochemical responses of glyphosate resistant and susceptible soybean plants exposed to glyphosate. Acta Physiol Plant. doi:10.1007/s11738-008-0144-8

  • Moller IM, Jensen PE, Hansson A (2007) Oxidative modifications to cellular components in plants. Annu Rev Plant Biol 58:459–481

    Article  PubMed  CAS  Google Scholar 

  • Nagata T, Nemotot Y, Hasezawa S (1992) Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int Rev Cytol 132:1–30

    Article  CAS  Google Scholar 

  • Nakazawa R, Kameda Y, Ito T, Ogita Y, Michihata R, Takenaga H (2004) Selection and characterization of nickel-tolerant tobacco cells. Biol Plant 48:497–502

    Article  CAS  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  PubMed  CAS  Google Scholar 

  • Noriega GO, Balestrasse KB, Batlle A, Tomaro ML (2007) Cadmium induced oxidative stress in soybean plants also by the accumulation of δ-aminolevulinic acid. Biometals 20:841–851

    Article  PubMed  CAS  Google Scholar 

  • Olmos E, Martinez-Solano JR, Piqueras A, Hellin E (2003) Early steps in the oxidative burst induced by cadmium in cultured tobacco cells (BY-2 line). J Exp Bot 54:291–301

    Article  PubMed  CAS  Google Scholar 

  • Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, Margis-Pinheiro M, Ioannidis V, Penel C, Falquet Land Dunand C (2007) PeroxiBase: the peroxidase database. Phytochemistry 68:1605–1611

    Article  PubMed  CAS  Google Scholar 

  • Pitzschke A, Fornazi C, Hirt H (2006) Reactive oxygen species signalling in plants. Antioxid Redox Signal 8:1757–1764

    Article  PubMed  CAS  Google Scholar 

  • Rao KVM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Reumann S, Weber APM (2006) Plant peroxisomes respire in the light: some gaps of the photorespiratory C-2 cycle have become filled—others remain. Biochim Biophys Acta Mol Cell Res 1763:1496–1510

    Article  CAS  Google Scholar 

  • Rodriguez-Serrano M, Romero-Puertas MC, Zabalza A, Corpas FJ, Gómez M, Del Rio LA, Sandalio LM (2006) Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant Cell Environ 29:1532–1544

    Article  PubMed  CAS  Google Scholar 

  • Rooney CP, Zhao FJ, McGrath SP (2007) Phytotoxicity of nickel in a range of European soils: influence of soil properties, Ni solubility and speciation. Environ Pollut 145:596–605

    Article  PubMed  CAS  Google Scholar 

  • Saito A, Higuchi K, Hirai M, Nakane R, Yoshiba M, Tadano T (2005) Selection and characterization of a nickel-tolerant cell line from tobacco (Nicotiana tabacum cv. bright yellow-2) suspension culture. Physiol Plant 125:441–453

    CAS  Google Scholar 

  • Sakihama Y, Cohen MF, Grace SC, Yamasaki H (2002) Plant phenolic antioxidant and prooxidant activities: phenolics-induced oxidative damage mediated by metals in plants. Toxicology 177:67–80

    Article  PubMed  CAS  Google Scholar 

  • Santa-Catarina C, Silveira V, Scherer GFE, Floh EIS (2007) Polyamine and nitric oxide levels relate with morphogenetic evolution in somatic embryopgenesis of Ocotea catharinensis. Plant Cell Tissue Organ Cult 90:93–101

    Article  CAS  Google Scholar 

  • Scebba F, Arduini I, Ercoli L, Sebastiani L (2006) Cadmium effects on growth and antioxidant enzymes activities in Miscanthus sinensis. Biol Plant 50:688–692

    Article  CAS  Google Scholar 

  • Skorzynska- Polit E, Krupa Z (2006) Lipid peroxidation in cadmium-treated Phaseolus coccineus plant. Arch Environ Contam Toxicol 50:482–487

    Article  PubMed  CAS  Google Scholar 

  • Steiner N, Santa-Catarina C, Silveira V, Floh EIS, Guerra MP (2007) Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell Tissue Organ Cult 89:55–62

    Article  CAS  Google Scholar 

  • Symons GM, Ross JJ, Jager CE, Reid JB (2008) Brassinosteroid transport. J Exp Bot 59:17–24

    Article  PubMed  CAS  Google Scholar 

  • Thangavel P, Long S, Minocha R (2007) Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sang.) cell suspension cultures under cadmium and zinc stress. Plant Cell Tissue Organ Cult 88:201–216

    Article  CAS  Google Scholar 

  • Urs RR, Roberts PD, Schultz DC (2006) Localisation of hydrogen peroxide and peroxidase in gametophytes of Ceratopteris richardii (C-fern) grown in the presence of pathogenic fungi in a gnotobiotic system. Ann Appl Biol 149:327–336

    Article  CAS  Google Scholar 

  • Vitorello VA, Haug A (1996) Short-term aluminum uptake by tobacco cells: growth dependence and evidence for internalization in a discrete peripheral region. Physiol Plant 97:536–544

    Article  CAS  Google Scholar 

  • Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57:701–710

    Article  PubMed  Google Scholar 

  • Wahid A, Ghani A (2008) Varietal differences in mung bean (Vigna radiata) for growth, yield, toxicity symptoms and cadmium accumulation. Ann Appl Biol 152:59–69

    Article  CAS  Google Scholar 

  • Yakimova ET, Kapchina-Toteva VM, Laarhoven LJ, Harren FM, Woltering EJ (2006) Involvement of ethylene and lipid signaling in cadmium-induced programmed cell death in tomato suspension cells. Plant Physiol 44:581–589

    CAS  Google Scholar 

  • Yannarelli GG, Fernandez-Alvarez AJ, Santa-Cruz DM, Tomaro ML (2007) Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry 68:505–512

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP—Grant no. 04/08444-6). R.A.A. and P.L.G. would like to thank the Conselho nacional de Desenvolvimento Científico e Tecnológico (CNPq-Brazil) for the fellowship and scholarship granted. C.C.M. would like to thank FAPESP for the scholarship. P.L.G. and G.B.P. contributed equally to the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo A. Azevedo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gratão, P.L., Pompeu, G.B., Capaldi, F.R. et al. Antioxidant response of Nicotiana tabacum cv. Bright Yellow 2 cells to cadmium and nickel stress. Plant Cell Tiss Organ Cult 94, 73–83 (2008). https://doi.org/10.1007/s11240-008-9389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-008-9389-6

Keywords

Navigation