Skip to main content
Log in

Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L.

  • Original Paper
  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

An efficient method for Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L. is described. Embryogenic cell suspension cultures derived from stem internode callus were transformed with Agrobacterium tumefaciens harbouring pCAMBIA 1301 plant expression vector. Transformed colonies were selected on medium supplemented with hygromycin (5 mg/l). Continuously growing transformed cell suspension cultures were initiated from these colonies. Expression of β-glucuronidase in the suspension cultures was analysed by RT-PCR and GUS histochemical staining. GUS specific activity in the transformed suspension cultures was quantified using a MUG-based fluorometric assay. Expression levels of up to 105,870 pmol 4-MU/min/mg of total protein were noted in the transformed suspension cultures and 67,248 pmol 4-MU/min/mg of total protein in the spent media. Stability of GUS expression over a period of 7 months was studied. Plantlets were regenerated from the transformed embryogenic cells. Stable insertion of T-DNA into the host genome was confirmed by Southern blot analysis. This is the first report showing stable high-level expression of a foreign protein using embryogenic cell suspension cultures in S. album.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BAP:

Benzylaminopurine

2,4-D :

2,4-Dichlorophenoxy acetic acid

GA3 :

Gibberllic acid

IAA:

Indole-3-acetic acid

MUG:

4-Methylumbelliferyl-β-d-glucuronide

RT-PCR:

Reverse transcriptase-polymerase chain reaction

References

  • Archambault J (1991) Large-scale (20-L) culture of surface-immobilized Catharanthus roseus cells. Enzyme Microb Technol 13:882–892

    Article  PubMed  CAS  Google Scholar 

  • Bapat VA, Rao PS (1979) Somatic embryogenesis and plantlet formation in tissue cultures of sandalwood (Santalum album L.). Ann Bot 44:629–630

    Google Scholar 

  • Baur A, Kaufmann F, Rolli H, Weise A, Luethje R, Berg B, Braun M, Baeumer W, Kietzmann M, Reski R, Gorr G (2005) A fast and flexible PEG-mediated transient expression system in plants for high level expression of secreted recombinant proteins. J Biotechnol 119:332–342

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A dye binding assay for protein. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chan MT, Chao YC, Yu SM (1994) Novel gene expression system for plant cells based on induction of α-amylase promoter by carbohydrate starvation. J Biol Chem 269:17635–17641

    PubMed  CAS  Google Scholar 

  • Chen Y, Lu L, Deng W, Yang X, McAvoy R, Zhao D, Pei Y, Luo K, Duan H, Smith W, Thammina C, Zheng X, Ellis D, Li Y (2006) In vitro regeneration and Agrobacterium-mediated genetic transformation of Euonymus alatus. Plant Cell Rep 25:1043–1051

    Article  PubMed  CAS  Google Scholar 

  • Conrad U, Fiedler U (1998) Compartment-specific accumulation of recombinant immunoglobulins in plant cells: an essential tool for antibody production and immunomodulation of physiological functions and pathogen activity. Plant Mol Biol 38:101–109

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6:219–226

    Article  PubMed  CAS  Google Scholar 

  • De Jaeger G, Scheffer S, Jacobs A, Zambre M, Zobell O, Goossens A, Depicker A, Angenon G (2002) Boosting heterologous protein production in transgenic dicotyledonous seeds using Phaseolus vulgaris regulatory sequences. Nat Biotechnol 20:1265–1268

    Article  PubMed  CAS  Google Scholar 

  • Fiedler U, Conrad U (1995) High-level production and long-term storage of engineered antibodies in transgenic tobacco seeds. Bio/Technology 13:1090–1093

    Article  PubMed  CAS  Google Scholar 

  • Ganapathi TR, Sunil Kumar GB, Srinivas L, Revathi CJ, Bapat VA (2007) Analysis of the limitations of hepatitis B surface antigen expression in soybean cell suspension cultures. Plant Cell Rep 26:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell culture for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  PubMed  CAS  Google Scholar 

  • Hileman B (2003) ProdiGene and StarLink incidents provide ammunition to critics. Chem Eng News 81:25–33

    Google Scholar 

  • Hilton MG, Rhodes MJC (1990) Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Appl Microbiol Biotechnol 33:132–138

    Article  PubMed  CAS  Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS, Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2:208–218

    Article  CAS  Google Scholar 

  • James E, Lee JM (2001) The production of foreign proteins from genetically modified plant cells. In: Scheper Th (ed) Advances in biochemical engineering/biotechnology, vol 72. Springer-Verlag, Berlin, pp 127–156

    Google Scholar 

  • Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep 5:387–405

    Article  CAS  Google Scholar 

  • Kieran PM, Macloughlin PF, Malone DM (1997) Plant cell suspension cultures: some engineering considerartions. J Biotechnol 59:39–52

    Article  PubMed  CAS  Google Scholar 

  • Maghuly F, da Camara Machado A, Leopold S, Khan MA, Katinger H, Laimer M (2007) Long-term stability of marker gene expression in Prunus subhirtella: a model fruit tree species. J Biotechnol 127:310–321

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy DJ (2007) Improving containment strategies in biopharming. Plant Biotech J 5:555–569

    Article  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Pal S, Das S, Dey S (2003) Peroxidase and arabinogalactan protein as by-products during somatic embryo cultivation in air-lift bioreactor. Process Biochem 38:1471–1477

    Article  CAS  Google Scholar 

  • Peña L, Séguin A (2001) Recent advances in the genetic transformation of trees. Trends Biotechnol 19:500–506

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Schillberg S, Fischer R, Emans N (2003) Molecular farming of recombinant antibodies in plants. Cell Mol Life Sci 60:433–445

    Article  PubMed  CAS  Google Scholar 

  • Sharp JM, Doran PM (2001) Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol Prog 17:979–992

    Article  PubMed  CAS  Google Scholar 

  • Shiri V, Rao KS (1997) Introduction and expression of marker genes in sandalwood (Santalum album L.) following Agrobacterium-mediated transformation. Plant Sci 131:53–63

    Article  Google Scholar 

  • Smith F, Blowers AD, Van Eck J, Sanford J (2001) Expression of magainin and PGL classes of antimicrobial peptide genes in plants, and their use in creating resistance to multiple plant pathogens. US Patent 6235973

  • Su WW, Guan P, Bugos RC (2004) High-level secretion of functional green fluorescent protein from transgenic tobacco cell cultures: characterization and sensing. Biotechnol Bioeng 85:610–619

    Article  PubMed  CAS  Google Scholar 

  • Sunil Kumar GB, Ganapathi TR, Srinivas L, Bapat VA (2007) Plant molecular farming: host systems, technology and products. In: Verpoorte R, Alferman AW, Johnson TS (eds) Applications of plant metabolic engineering. Springer, Dordrecht, pp 45–77

    Chapter  Google Scholar 

  • Thomas S, Balasundaran M (2001) Purification of sandal spike phytoplasma for the production of polyclonal antibody. Curr Sci 80:1489–1494

    CAS  Google Scholar 

  • Walmsley AM, Arntzen CJ (2003) Plant cell factories and mucosal vaccines. Curr Opin Biotech 14:145–150

    Article  PubMed  CAS  Google Scholar 

  • White PR (1963) The cultivation of animal and plant cells, 2nd edn. The Ronald press, New York, 228 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Ganapathi.

Additional information

U. K. S. Shekhawat and T. R. Ganapathi contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shekhawat, U.K.S., Ganapathi, T.R., Srinivas, L. et al. Agrobacterium-mediated genetic transformation of embryogenic cell suspension cultures of Santalum album L.. Plant Cell Tiss Organ Cult 92, 261–271 (2008). https://doi.org/10.1007/s11240-007-9330-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-007-9330-4

Keywords

Navigation