Skip to main content
Log in

Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing

  • Published:
Plant Cell, Tissue and Organ Culture Aims and scope Submit manuscript

Abstract

The presence of latent bacteria is a serious problem in plant tissue cultures. While endophytes are generally beneficial to plants in situ, they may affect culture growth under the modified conditions in vitro. The present study was undertaken to identify and characterize endophytic bacteria associated with the medicinal plant Echinacea in tissue culture. Based on classical microbiological tests and 16S rRNA analyses, it was found that endophytic bacteria associated with aseptically micropropagated Echinacea plantlets are representatives of several genera, Acinetobacter, Bacillus, Pseudomonas, Wautersia (Ralstonia) and Stenotrophomonas. Based on TLC and HPLC analyses, we found that Pseudomonas stutzeri P3 strain produces plant hormone, auxin (indole-3-acetic acid, IAA). Antibiotic resistance was also assessed as a virulence factor. The majority of endophytic bacteria were resistant to the antibiotic kanamycin, but susceptible to chloramphenicol. Recommendations for propagating Echinacea in vitro cultures involve the addition of chloramphenicol, tetracycline, and ampicillin, antibiotics that cause no side effects on these plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

IAA:

indole-3-acetic acid

MS:

Murashige and Skoog medium

NA:

nutrient agar

NB:

nutrient broth

TSA:

tryptic soy agar

References

  • Araujo WL, Marcon J, Maccheroni W Jr, Van Elsas JD, Van Vuurde JWL, Azevedol JL, (2002) Diversity of endophytic bacterial populations and their interaction with Xylella fastidiosa in citrus plants Appl. Environ. Microbiol. 68: 4906–4914

    Article  PubMed  CAS  Google Scholar 

  • Bacon CW, Glenn AE, Hinton DM, (2002) Isolation, in planta detection and culture of endophytic bacteria and fungi In: Hurst CJ, (ed) Manual of Environmental Microbiology 2nd edn ASM Press Washington, DC (pp. 543–553)

    Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M, (1966) Antibiotic susceptibility testing by a standardized single disk method Am. J. Clin. Path. 45: 493–496

    PubMed  CAS  Google Scholar 

  • Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL, (2002) GenBank Nucleic Acids Res. 30:17–20

    Article  PubMed  CAS  Google Scholar 

  • Binns SE, Bernard RB, Arnason JT, (2002) A taxonomic revision of Echinacea (Asteraceae: Heliantheae) Syst. Bot. 27: 610–632

    Google Scholar 

  • Chromas 2.31 for windows (2005) Copyright © Technelysium Pty Ltd, Australia

  • Falkiner FR, (1990) The criteria for choosing an antibiotic for control of bacteria in plant tissue culture Int. Assoc. Plant Tiss. Cult. Newslett. 60: 14–21

    Google Scholar 

  • Fintrac Market Survey: The US market for Medicinal herbs (2001) Rural Agriculture Incomes with a Sustainable Environment March: 1–9

  • Giles JR, Palat CT, Chien SH, Chang ZG, Kennedy DT, (2000) Evaluation of Echinacea for treatment of common colds Pharmacotherapy 20: 690–697

    Article  PubMed  CAS  Google Scholar 

  • Halda-Alija L, (2003) Identification of indole-3-acetic acid producing freshwater wetland rhizosphere bacteria associated with Juncus effusus L Can. J. Microbiol. 49: 781–787

    Article  PubMed  CAS  Google Scholar 

  • Halda-Alija L, (2004) Incidence of antibiotic-resistant Klebsiella pneumoniae & Enterobacter species in freshwater wetlands Lett. Appl. Microbiol. 39: 445–450

    Article  PubMed  CAS  Google Scholar 

  • Hall C III, (2003) Echinacea as a functional food ingredient Adv. Food Nutr. Res. 47: 114–173

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW, (1997) Bacterial endophytes in agricultural crops Can. J. Microbiol. 43: 895–914

    Article  CAS  Google Scholar 

  • Hennerty MJ, Upton ME, Harris DP, Eaton RA, James DJ, (1988) Microbial contamination of in vitro cultures of apple stocks M26 and M9 Acta Hortic. 225: 129–137

    Google Scholar 

  • Holland MA, Polacco JC, (1994) PPFMs and other covert contaminants: is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197–209

    Article  CAS  Google Scholar 

  • Leifert C, Cassells AC, (2001) Microbial hazards in plant tissue and cell cultures In Vitro Cell Dev. Biol. Plant 37: 133–138

    Article  Google Scholar 

  • Leifert C, Woodward S, (1998) Laboratory contamination management: the requirement for microbiological quality assurance Plant Cell Tiss. Org. Cult. 52: 83–88

    Article  Google Scholar 

  • Lindenmuth GF, Lindenmuth EB, (2000) The efficacy of Echinacea compounds herbal tea preparation on the severity and duration of upper respiratory and flue symptoms: a randomized, double blind placebo-controlled study J. Altern. Complem. Med. 6: 327–634

    Article  CAS  Google Scholar 

  • Lata H, Andrade Z, Schaneberg B, Bedir E, Khan I, Moraes RM, (2003) Arbuscular mycorrhizal inoculation enhances survival rates and growth of micropropagated plantlets of Echinacea pallida Planta Med. 69: 673–676

    Article  Google Scholar 

  • Lata H, Andrade Z, Bedir E, Moraes RM, (2004) Mass Propagation of Echinacea angustifolia: a protocol refinement using shoot encapsulation and temporary immersion liquid system Acta Hortic. 629: 409–414

    Google Scholar 

  • Leboffe MJ, Pierce BE, (2002) Microbiology Laboratory Theory and Application. Morton Publishing Company Colorado

    Google Scholar 

  • Leifert C, Ritchie JY, Waites WM, (1991) Contaminants of plant tissue and cell cultures World J. Microbiol. Biotechnol. 7: 452–469

    Article  Google Scholar 

  • McGreoger RL, (1968) A new species and two new varieties of Echinacea (Compositae) Trans. Kansas Acad. Sci. 70: 366–370

    Article  Google Scholar 

  • Minkwitz A, Berg G, (2001) Comparison of antifungal activities and 16S ribosomal DNA sequences of clinical and environmental isolates of Stenotrophomonas maltophilia J. Clin. Microbiol. 39: 139–145

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F, (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures Physiol. Plant. 15: 473–497

    Article  CAS  Google Scholar 

  • Nowak J, Asiedu SK, Bensalim S, Richards J, Stewart A, Smith C, Stevens D, Sturz AV, (1998) From laboratory to applications: challenges and progress with in vitro dual cultures of potato and beneficial bacteria Plant Cell Tiss. Org. Cult. 52: 97–103

    Article  Google Scholar 

  • Pugh N, Balachandran P, Lata H, Dayan FE, Joshi V, Bedir E, Makino T, Duke SO, Moraes RM, Khan I, Pasco DS, (2005) Melanin: dietary mucosal immune stimulant from Echinacea and other botanical supplements Int. Immunopharmacol. 5: 637–647

    Article  PubMed  CAS  Google Scholar 

  • Rediers H, Bonnecarrere V, Rainey PB, Hamonts K, Vanderleyden J, Mot RD, (2003) Development and application of a dapB-based in vivo expression technology system to study colonization of rice by the endophytic nitrogen-fixing bacterium Pseudomonas stutzeri A15 Appl. Environ. Microbiol. 69: 6864–6874

    Article  PubMed  CAS  Google Scholar 

  • Rius N, Fuste MC, Guasp C, Lalucat J, Loren JG, (2001) Clonal population structure of Pseudomonas stutzeri, a species with exceptional genetic diversity J. Bacteriol. 183: 736–744

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M, (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees Mol. Biol. Evol. 4: 406–425

    PubMed  CAS  Google Scholar 

  • Salih S, Waterworth H, Thompson DA, (2001) Role of plant tissue culture in international exchange and quarantine of germplasm in the United States and Canada HortScience 36: 1015–1021

    Google Scholar 

  • Tang WH, (1994) Yield-increasing bacteria, (YIB) and biocontrol of sheath blast of rice In: Ryder MH, Stephens PM, Bowen GD, (eds) Improving Plant Productivity with Rhizobacteria. Commonwealth Scientific and Industrial Research Organization Adelaide, Australia (pp. 267–278)

    Google Scholar 

  • Thomas P, (2004) In vitro decline in plant cultures: detection of a legion of covert bacteria as the cause for degeneration of long term micropropagated triploid watermelon cultures. Plant Cell Tiss. Org. Cult. 77: 173–179

    Article  Google Scholar 

  • Van den Houwe I, Swennen R, (2000) Characterization and control of bacterial contaminants in in vitro cultures of banana (Musa spp.) Acta Hortic. 530: 69–79

    Google Scholar 

  • Vaneechoutte M, Kampfer P, De Baere T, Falsen E, Verschraeren G, (2004) Wautersia gen. nov., a new genus accomdating the phylogenetic lineage including Ralstonia eutropha and related species, and proposal of Ralstonia [Pseudomonas] syzygii (Roberts et al., 1990) comb Nov. Int. J. Syst. Evol. Microbiol. 54: 317–327

    Article  Google Scholar 

  • You CB, Song HX, Wang JP, Lin M, Hai WL, (1991) Association of Alcaligenes faecalis with wetland rice Plant Soil 137: 81–85

    Article  Google Scholar 

  • Zelena E, Kutacek M, Cermak V, (1988) Fate of root applied indoleacetic acid and its influence on growth of plants In: Kutacek M, Bandurski RS, Krekule J, (eds) Physiology and Biochemistry of Auxins in Plants SPB Academic Publishing The Hague, (pp. 371–376)

    Google Scholar 

Download references

Acknowledgements

This study was supported by Agricultural Research Service Specific Cooperative Agreement No. 58-6408-2-0009 and NIH 5P20RR016476. The authors thank Robin Ellis and Scott Burris for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Lata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lata, H., Li, X., Silva, B. et al. Identification of IAA-producing endophytic bacteria from micropropagated Echinacea plants using 16S rRNA sequencing. Plant Cell Tiss Organ Cult 85, 353–359 (2006). https://doi.org/10.1007/s11240-006-9087-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-006-9087-1

Keywords

Navigation