Skip to main content

Advertisement

Log in

Outcomes and risk factors of perforating and non-perforating middle cerebral artery infarctions after intravenous thrombolysis

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The clinical symptoms of perforating arteries differ, and responses to intravenous thrombolytic therapy are heterogeneous. Here, we investigated the effect of intravenous thrombolytic therapy and the related factors influencing acute perforating and non-perforating middle cerebral artery infarctions. We analyzed 320 patients with acute middle cerebral artery infarction who received alteplase thrombolysis within 4.5 h of onset at two stroke centers from January 2016 to December 2019. Outcome measures included rates of a favorable functional outcome (modified Rankin Scale scores of 0–2), distribution of modified Rankin Scale scores, intracranial hemorrhage, and symptomatic cerebral hemorrhage at 14 days, with comparisons between perforating artery and non-perforating artery cerebral infarction groups. In the perforating vessel disease group, 12 cases (17.4%) of intracranial hemorrhage occurred, with symptomatic cerebral hemorrhage in three cases (4.3%); there were no significant differences between the perforating and non-perforating vessel disease groups (all P > 0.05). In the perforating vessel disease group, the only significant prognostic factor was the National Institutes of Health Stroke Scale score before thrombolysis (Exp(B) = 1.365; 95% confidence interval [CI] 1.124–1.659; P = 0.002), and the only significant risk factor for hemorrhagic transformation was previous perforator disease (Exp(B) = 0.078; P = 0.038). Regardless of whether an acute infarction is perforating or non-perforating, intravenous thrombolytic therapy can yield a favorable outcome. Therefore, intravenous thrombolysis should be actively administered to treat perforating artery infarctions with a high risk of disability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Data are available upon reasonable request. Anonymized data will be shared by request from any qualified investigator.

Abbreviations

MCA:

Middle cerebral artery

IVT:

Intravenous thrombolysis

NIHSS:

National Institutes of Health Stroke Scale

DNT:

Door-to-needle time

mRS:

Modified Rankin scale

TOAST:

Trial of ORG 10172 in Acute Stroke Treatment

CH:

Cerebral hemorrhage

PAD:

Perforating artery disease

SCH:

Symptomatic cerebral hemorrhage

References

  1. Damasio H (1983) A computed tomographic guide to the identification of cerebral vascular territories. Arch Neurol 40(3):138–142. https://doi.org/10.1001/archneur.1983.04050030032005

    Article  CAS  PubMed  Google Scholar 

  2. Yamamoto Y, Nagakane Y, Tomii Y (2020) Cerebral deep vascular architectures and subcortical infarcts. Rinsho Shinkeigaku 60(6):397–406. https://doi.org/10.5692/clinicalneurol.60.cn-001408

    Article  PubMed  Google Scholar 

  3. Weiller C, Ringelstein EB, Reiche W, Thron A, Buell U (1990) The large striatocapsular infarct. A clinical and pathophysiological entity. Arch Neurol 47(10):1085–1091. https://doi.org/10.1001/archneur.1990.00530100051013

    Article  CAS  PubMed  Google Scholar 

  4. Bladin PF, Berkovic SF (1984) Striatocapsular infarction: large infarcts in the lenticulostriate arterial territory. Neurology 34(11):1423–1430. https://doi.org/10.1212/wnl.34.11.1423

    Article  CAS  PubMed  Google Scholar 

  5. Wong KS, Gao S, Chan YL, Hansberg T, Lam WW, Droste DW, Kay R, Ringelstein EB (2002) Mechanisms of acute cerebral infarctions in patients with middle cerebral artery stenosis: a diffusion-weighted imaging and microemboli monitoring study. Ann Neurol 52(1):74–81. https://doi.org/10.1002/ana.10250

    Article  PubMed  Google Scholar 

  6. Bang OY, Heo JH, Kim JY, Park JH, Huh K (2002) Middle cerebral artery stenosis is a major clinical determinant in striatocapsular small, deep infarction. Arch Neurol 59(2):259–263. https://doi.org/10.1001/archneur.59.2.259

    Article  PubMed  Google Scholar 

  7. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, Wang C, Li H, Meng X, Cui L, Jia J, Dong Q, Xu A, Zeng J, Li Y, Wang Z, Xia H, Johnston SC (2013) Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med 369(1):11–19. https://doi.org/10.1056/NEJMoa1215340

    Article  CAS  PubMed  Google Scholar 

  8. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, Jauch EC, Kidwell CS, Leslie-Mazwi TM, Ovbiagele B, Scott PA, Sheth KN, Southerland AM, Summers DV, Tirschwell DL (2019) Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 50(12):e344–e418. https://doi.org/10.1161/str.0000000000000211

    Article  PubMed  Google Scholar 

  9. Johnston SC, Easton JD, Farrant M, Barsan W, Battenhouse H, Conwit R, Dillon C, Elm J, Lindblad A, Morgenstern L, Poisson SN, Palesch Y (2013) Platelet-oriented inhibition in new TIA and minor ischemic stroke (POINT) trial: rationale and design. Int J Stroke 8(6):479–483. https://doi.org/10.1111/ijs.12129

    Article  PubMed  PubMed Central  Google Scholar 

  10. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 333(24):1581–1587. https://doi.org/10.1056/nejm199512143332401

    Article  Google Scholar 

  11. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, Brott T, Cohen G, Davis S, Donnan G, Grotta J, Howard G, Kaste M, Koga M, von Kummer R, Lansberg M, Lindley RI, Murray G, Olivot JM, Parsons M, Tilley B, Toni D, Toyoda K, Wahlgren N, Wardlaw J, Whiteley W, del Zoppo GJ, Baigent C, Sandercock P, Hacke W (2014) Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet 384(9958):1929–1935. https://doi.org/10.1016/s0140-6736(14)60584-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muchada M, Rodriguez-Luna D, Pagola J, Flores A, Sanjuan E, Meler P, Boned S, Alvarez-Sabin J, Ribo M, Molina CA, Rubiera M (2014) Impact of time to treatment on tissue-type plasminogen activator-induced recanalization in acute ischemic stroke. Stroke 45(9):2734–2738. https://doi.org/10.1161/strokeaha.114.006222

    Article  CAS  PubMed  Google Scholar 

  13. Duan Z, Fu C, Chen B, Xu G, Tao L, Tang T, Hou H, Fu X, Yang M, Liu Z, Zhang X (2015) Lesion patterns of single small subcortical infarct and its association with early neurological deterioration. Neurol Sci 36(10):1851–1857. https://doi.org/10.1007/s10072-015-2267-1

    Article  PubMed  Google Scholar 

  14. Yamamoto N, Terasawa Y, Satomi J, Sakai W, Harada M, Izumi Y, Nagahiro S, Kaji R (2014) Predictors of neurologic deterioration in patients with small-vessel occlusion and infarcts in the territory of perforating arteries. J Stroke Cerebrovasc Dis 23(8):2151–2155. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.011

    Article  PubMed  Google Scholar 

  15. Del Bene A, Makin SD, Doubal FN, Inzitari D, Wardlaw JM (2013) Variation in risk factors for recent small subcortical infarcts with infarct size, shape, and location. Stroke 44(11):3000–3006. https://doi.org/10.1161/strokeaha.113.002227

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lahoti S, Gokhale S, Caplan L, Michel P, Samson Y, Rosso C, Limaye K, Hinduja A, Singhal A, Ali S, Pettigrew LC, Kryscio R, Dedhia N, Hastak S, Liebeskind DS (2014) Thrombolysis in ischemic stroke without arterial occlusion at presentation. Stroke 45(9):2722–2727. https://doi.org/10.1161/strokeaha.114.005757

    Article  CAS  PubMed  Google Scholar 

  17. Shobha N, Fang J, Hill MD (2013) Do lacunar strokes benefit from thrombolysis? Evidence from the Registry of the Canadian Stroke Network. Int J Stroke 8(Suppl A100):45–49. https://doi.org/10.1111/j.1747-4949.2012.00932.x

    Article  PubMed  Google Scholar 

  18. Wu MC, Tsai LK, Wu CC, Yeh SJ, Tang SC, Chen YJ, Chen CL, Jeng JS (2014) Thrombolytic therapy is an only determinant factor for stroke evolution in large anterior choroidal artery infarcts. J Stroke Cerebrovasc Dis 23(5):1089–1093. https://doi.org/10.1016/j.jstrokecerebrovasdis.2013.09.015

    Article  PubMed  Google Scholar 

  19. Deguchi I, Hayashi T, Kato Y, Nagoya H, Ohe Y, Fukuoka T, Maruyama H, Horiuchi Y, Tanahashi N (2013) Treatment outcomes of tissue plasminogen activator infusion for branch atheromatous disease. J Stroke Cerebrovasc Dis 22(7):e168-172. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012.10.012

    Article  PubMed  Google Scholar 

  20. Yang L, Cao W, Wu F, Ling Y, Cheng X, Dong Q (2016) Predictors of clinical outcome in patients with acute perforating artery infarction. J Neurol Sci 365:108–113. https://doi.org/10.1016/j.jns.2016.03.048

    Article  PubMed  Google Scholar 

  21. Tsao JW, Hemphill JC 3rd, Johnston SC, Smith WS, Bonovich DC (2005) Initial Glasgow Coma Scale score predicts outcome following thrombolysis for posterior circulation stroke. Arch Neurol 62(7):1126–1129. https://doi.org/10.1001/archneur.62.7.1126

    Article  PubMed  Google Scholar 

  22. Sarikaya H, Arnold M, Engelter ST, Lyrer PA, Mattle HP, Georgiadis D, Bonati LH, Fluri F, Fischer U, Findling O, Ballinari P, Baumgartner RW (2011) Outcomes of intravenous thrombolysis in posterior versus anterior circulation stroke. Stroke 42(9):2498–2502. https://doi.org/10.1161/strokeaha.110.607614

    Article  PubMed  Google Scholar 

  23. Dorňák T, Král M, Hazlinger M, Herzig R, Veverka T, Buřval S, Šaňák D, Zapletalová J, Antalíková K, Kaňovský P (2015) Posterior vs. anterior circulation infarction: demography, outcomes, and frequency of hemorrhage after thrombolysis. Int J Stroke 10(8):1224–1228. https://doi.org/10.1111/ijs.12626

    Article  PubMed  Google Scholar 

  24. Förster A, Gass A, Kern R, Griebe M, Hennerici MG, Szabo K (2011) Thrombolysis in posterior circulation stroke: stroke subtypes and patterns, complications and outcome. Cerebrovasc Dis 32(4):349–353. https://doi.org/10.1159/000330346

    Article  CAS  PubMed  Google Scholar 

  25. Álvarez-Sabín J, Maisterra O, Santamarina E, Kase CS (2013) Factors influencing haemorrhagic transformation in ischaemic stroke. Lancet Neurol 12(7):689–705. https://doi.org/10.1016/s1474-4422(13)70055-3

    Article  PubMed  Google Scholar 

  26. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, Larrue V, Lees KR, Medeghri Z, Machnig T, Schneider D, von Kummer R, Wahlgren N, Toni D (2008) Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 359(13):1317–1329. https://doi.org/10.1056/NEJMoa0804656

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Special Project for Diagnosis and Treatment of Key Clinical Diseases in Suzhou (No. LCZX202029), Suzhou City Medical Device and New Medicine Clinical Trial Institutional Capacity Improvement Project (No. SLT202001), Suzhou Science and Technology Development Plan (No. SS2019048), Project of “Six Talent Peaks” of Jiangsu Province (No. SWYY-017), and Project of Huaguoshan Mountain Talent Plan—Doctors for Innovation and Entrepreneurship. Lianyungang Science and Technology Association Soft Project Research Funding Project (NO: Lkxyb2111).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenglin Cai.

Ethics declarations

Conflict of interest

The authors declare that they have no financial or other conflicts of interest in relation to this research and its publication.

Ethical approval

The study protocol and consent documents were reviewed and approved by the Ethics Committee of Nanjing Medical University (NO: (2016)13).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, H., Wang, Y., Zhang, Y. et al. Outcomes and risk factors of perforating and non-perforating middle cerebral artery infarctions after intravenous thrombolysis. J Thromb Thrombolysis 53, 722–730 (2022). https://doi.org/10.1007/s11239-021-02620-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-021-02620-2

Keywords

Navigation