Skip to main content
Log in

The effect of oxygen in Sirt3-mediated myocardial protection: a proof-of-concept study in cultured cardiomyoblasts

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Sirtuin 3 is a nicotinamide adenine dinucleotide dependent mitochondrial deacetylase that governs mitochondrial metabolism and oxidative defense. The demise in myocardial function following myocardial ischemia has been associated with mitochondrial dysfunction. Sirt3 maintains myocardial contractile function and protects from cardiac hypertrophy. The role of Sirt3 in ischemia is controversial. Our objective was to understand, under what circumstances Sirt3 is protective in different facets of ischemia, using an in vitro proof-of-concept approach based on simulated ischemia in cultured cardiomyoblasts. Cultured H9c2 cardiomyoblasts were subjected to hypoxia and/or serum deprivation, the combination of which we refer to as simulated ischemia. Apoptosis, as assessed by Annexin V staining in life-cell imaging and propidium-iodide inclusion in flow cytometry, was enhanced following simulated ischemia. Interestingly, serum deprivation was a stronger trigger of apoptosis than hypoxia. Knockdown of Sirt3 further increased apoptosis upon serum deprivation, whereas no such effect occurred upon additional hypoxia. Similarly, only upon serum deprivation but not upon simulated ischemia, silencing of Sirt3 led to a deterioration of mitochondrial function in extracellular flux analysis. In the absence of oxygen these Sirt3-dependent effects were abolished. These data indicate, that Sirt3-mediated myocardial protection is oxygen-dependent. Thus, mitochondrial respiration takes center-stage in Sirt3-dependent prevention of stress-induced myocardial damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Moran AE, Oliver JT, Mirzaie M, Forouzanfar MH, Chilov M, Anderson L, Morrison JL, Khan A, Zhang N, Haynes N, Tran J, Murphy A, Degennaro V, Roth G, Zhao D, Peer N, Pichon-Riviere A, Rubinstein A, Pogosova N, Prabhakaran D, Naghavi M, Ezzati M, Mensah GA (2012) Assessing the global burden of ischemic heart disease: part 1: methods for a systematic review of the global epidemiology of ischemic heart disease in 1990 and 2010. Glob Heart 7(4):315–329. https://doi.org/10.1016/j.gheart.2012.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  2. Ziaeian B, Fonarow GC (2016) Epidemiology and aetiology of heart failure. Nat Rev Cardiol 13(6):368–378. https://doi.org/10.1038/nrcardio.2016.25

    Article  PubMed  PubMed Central  Google Scholar 

  3. Roes SD, Kelle S, Kaandorp TA, Kokocinski T, Poldermans D, Lamb HJ, Boersma E, van der Wall EE, Fleck E, de Roos A, Nagel E, Bax JJ (2007) Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction. Am J Cardiol 100(6):930–936. https://doi.org/10.1016/j.amjcard.2007.04.029

    Article  PubMed  Google Scholar 

  4. Wallace DC (2000) Mitochondrial defects in cardiomyopathy and neuromuscular disease. Am Heart J 139(2 Pt 3):S70–S85

    Google Scholar 

  5. Winnik S, Auwerx J, Sinclair DA, Matter CM (2015) Protective effects of sirtuins in cardiovascular diseases: from bench to bedside. Eur Heart J 36(48):3404–3412. https://doi.org/10.1093/eurheartj/ehv290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Chalkiadaki A, Guarente L (2012) Sirtuins mediate mammalian metabolic responses to nutrient availability. Nat Rev Endocrinol 8(5):287–296. https://doi.org/10.1038/nrendo.2011.225

    Article  PubMed  CAS  Google Scholar 

  7. Houtkooper RH, Pirinen E, Auwerx J (2012) Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13(4):225–238. https://doi.org/10.1038/nrm3293

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ahn BH, Kim HS, Song S, Lee IH, Liu J, Vassilopoulos A, Deng CX, Finkel T (2008) A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Proc Natl Acad Sci USA 105(38):14447–14452. https://doi.org/10.1073/pnas.0803790105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP (2008) SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol Cell Biol 28(20):6384–6401. https://doi.org/10.1128/MCB.00426-08

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Chen CJ, Fu YC, Yu W, Wang W (2013) SIRT3 protects cardiomyocytes from oxidative stress-mediated cell death by activating NF-kappaB. Biochem Biophys Res Commun 430(2):798–803. https://doi.org/10.1016/j.bbrc.2012.11.066

    Article  PubMed  CAS  Google Scholar 

  11. Cheung KG, Cole LK, Xiang B, Chen K, Ma X, Myal Y, Hatch GM, Tong Q, Dolinsky VW (2015) Sirtuin-3 (SIRT3) protein attenuates doxorubicin-induced oxidative stress and improves mitochondrial respiration in H9c2 cardiomyocytes. J Biol Chem 290(17):10981–10993. https://doi.org/10.1074/jbc.M114.607960

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zeng H, Vaka VR, He X, Booz GW, Chen JX (2015) High-fat diet induces cardiac remodelling and dysfunction: assessment of the role played by SIRT3 loss. J Cell Mol Med 19(8):1847–1856. https://doi.org/10.1111/jcmm.12556

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Klishadi MS, Zarei F, Hejazian SH, Moradi A, Hemati M, Safari F (2015) Losartan protects the heart against ischemia reperfusion injury: sirtuin3 involvement. J Pharm Pharm Sci 18(1):112–123

    Article  PubMed  CAS  Google Scholar 

  14. Zeng H, Li L, Chen JX (2014) Loss of Sirt3 limits bone marrow cell-mediated angiogenesis and cardiac repair in post-myocardial infarction. PLoS ONE 9(9):e107011. https://doi.org/10.1371/journal.pone.0107011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Koentges C, Pfeil K, Schnick T, Wiese S, Dahlbock R, Cimolai MC, Meyer-Steenbuck M, Cenkerova K, Hoffmann MM, Jaeger C, Odening KE, Kammerer B, Hein L, Bode C, Bugger H (2015) SIRT3 deficiency impairs mitochondrial and contractile function in the heart. Basic Res Cardiol 110(4):36. https://doi.org/10.1007/s00395-015-0493-6

    Article  PubMed  CAS  Google Scholar 

  16. Koentges C, Pfeil K, Meyer-Steenbuck M, Lother A, Hoffmann MM, Odening KE, Hein L, Bode C, Bugger H (2016) Preserved recovery of cardiac function following ischemia-reperfusion in mice lacking SIRT3. Can J Physiol Pharmacol 94(1):72–80. https://doi.org/10.1139/cjpp-2015-0152

    Article  PubMed  CAS  Google Scholar 

  17. Bochaton T, Crola-Da-Silva C, Pillot B, Villedieu C, Ferreras L, Alam MR, Thibault H, Strina M, Gharib A, Ovize M, Baetz D (2015) Inhibition of myocardial reperfusion injury by ischemic postconditioning requires sirtuin 3-mediated deacetylation of cyclophilin D. J Mol Cell Cardiol 84:61–69. https://doi.org/10.1016/j.yjmcc.2015.03.017

    Article  PubMed  CAS  Google Scholar 

  18. Kuznetsov AV, Javadov S, Sickinger S, Frotschnig S, Grimm M (2015) H9c2 and HL-1 cells demonstrate distinct features of energy metabolism, mitochondrial function and sensitivity to hypoxia-reoxygenation. Biochim Biophys Acta 1853(2):276–284. https://doi.org/10.1016/j.bbamcr.2014.11.015

    Article  PubMed  CAS  Google Scholar 

  19. Watkins SJ, Borthwick GM, Arthur HM (2011) The H9C2 cell line and primary neonatal cardiomyocyte cells show similar hypertrophic responses in vitro. In Vitro Cell Dev Biol Anim 47(2):125–131. https://doi.org/10.1007/s11626-010-9368-1

    Article  PubMed  CAS  Google Scholar 

  20. Hescheler J, Meyer R, Plant S, Krautwurst D, Rosenthal W, Schultz G (1991) Morphological, biochemical, and electrophysiological characterization of a clonal cell (H9c2) line from rat heart. Circ Res 69(6):1476–1486

    Article  PubMed  CAS  Google Scholar 

  21. Bonavita F, Stefanelli C, Giordano E, Columbaro M, Facchini A, Bonafe F, Caldarera CM, Guarnieri C (2003) H9c2 cardiac myoblasts undergo apoptosis in a model of ischemia consisting of serum deprivation and hypoxia: inhibition by PMA. FEBS Lett 536(1–3):85–91

    Article  PubMed  CAS  Google Scholar 

  22. Walsh GM, Dewson G, Wardlaw AJ, Levi-Schaffer F, Moqbel R (1998) A comparative study of different methods for the assessment of apoptosis and necrosis in human eosinophils. J Immunol Methods 217(1–2):153–163

    Article  PubMed  CAS  Google Scholar 

  23. Charles I, Khalyfa A, Kumar DM, Krishnamoorthy RR, Roque RS, Cooper N, Agarwal N (2005) Serum deprivation induces apoptotic cell death of transformed rat retinal ganglion cells via mitochondrial signaling pathways. Invest Ophthalmol Vis Sci 46(4):1330–1338. https://doi.org/10.1167/iovs.04-0363

    Article  PubMed  Google Scholar 

  24. Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP (2009) Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J Clin Invest 119(9):2758–2771. https://doi.org/10.1172/JCI39162

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Hirschey MD, Shimazu T, Goetzman E, Jing E, Schwer B, Lombard DB, Grueter CA, Harris C, Biddinger S, Ilkayeva OR, Stevens RD, Li Y, Saha AK, Ruderman NB, Bain JR, Newgard CB, Farese RV Jr, Alt FW, Kahn CR, Verdin E (2010) SIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation. Nature 464(7285):121–125. https://doi.org/10.1038/nature08778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Stride N, Larsen S, Hey-Mogensen M, Sander K, Lund JT, Gustafsson F, Kober L, Dela F (2013) Decreased mitochondrial oxidative phosphorylation capacity in the human heart with left ventricular systolic dysfunction. Eur J Heart Fail 15(2):150–157. https://doi.org/10.1093/eurjhf/hfs172

    Article  PubMed  CAS  Google Scholar 

  27. Porter GA, Urciuoli WR, Brookes PS, Nadtochiy SM (2014) SIRT3 deficiency exacerbates ischemia-reperfusion injury: implication for aged hearts. Am J Physiol Heart Circ Physiol 306(12):H1602–H1609. https://doi.org/10.1152/ajpheart.00027.2014

    Article  CAS  Google Scholar 

  28. Piper HM, Garcia-Dorado D, Ovize M (1998) A fresh look at reperfusion injury. Cardiovasc Res 38(2):291–300

    Article  PubMed  CAS  Google Scholar 

  29. Argaud L, Gateau-Roesch O, Raisky O, Loufouat J, Robert D, Ovize M (2005) Postconditioning inhibits mitochondrial permeability transition. Circulation 111(2):194–197. https://doi.org/10.1161/01.CIR.0000151290.04952.3B

    Article  PubMed  CAS  Google Scholar 

  30. Robich MP, Chu LM, Burgess TA, Feng J, Han Y, Nezafat R, Leber MP, Laham RJ, Manning WJ, Sellke FW (2012) Resveratrol preserves myocardial function and perfusion in remote nonischemic myocardium in a swine model of metabolic syndrome. J Am Coll Surg 215(5):681–689. https://doi.org/10.1016/j.jamcollsurg.2012.06.417

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was funded by the National Health and Medical Research Council (NHMRC), the Victorian Government’s Operational Infrastructure Support Program, the Swiss National Science Foundation (310030, 146923), Matching Funds at the University of Zurich and the Zurich Heart House, Zurich, Switzerland. PD was supported by the German Research Foundation. JS was supported by the German Society of Cardiology. KP is a Principal Research Fellow of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Winnik.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 282 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diehl, P., Gaul, D.S., Sogl, J. et al. The effect of oxygen in Sirt3-mediated myocardial protection: a proof-of-concept study in cultured cardiomyoblasts. J Thromb Thrombolysis 46, 102–112 (2018). https://doi.org/10.1007/s11239-018-1677-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-018-1677-3

Keywords

Navigation