Skip to main content

Advertisement

Log in

PAR-1 antagonist vorapaxar favorably improves global thrombotic status in patients with coronary disease

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

To assess the effect of vorapaxar on global thrombotic and thrombolytic status. The propensity for thrombus formation is determined by the balance between prothrombotic factors and endogenous thrombolysis. Impaired thrombolytic status increases cardiovascular risk. Vorapaxar is a novel, oral, protease-activated receptor-1 antagonist that inhibits thrombin-induced platelet activation. In the TRACER and TRA 2°P-TIMI 50 studies, patients with acute coronary syndromes and established atherosclerosis were randomized to vorapaxar 2.5 mg daily or placebo, in addition to standard care. In 57 patients enrolled in a single center, blood was tested with the point-of-care global thrombosis test, on and off treatment. This automated test employs non-anticoagulated blood to assess thrombotic and thrombolytic status, measuring the time required to form a shear-induced thrombus under physiological conditions (occlusion time, OT), and subsequently, the time to achieve endogenous lysis of the thrombus (lysis time, LT). Patients on vorapaxar exhibited longer OT on vs. off treatment [median 561 s (interquartile range 422–654) vs. 372 s(338–454), P = 0.003] and shorter LT on treatment than off [1,158 s(746–1,492) vs. 1,733 s(1,388–2,230), P = 0.016]. Patients on placebo showed no difference in OT [419 s(343–514) vs. 411 s(346–535), P = 0.658] or LT [1,236 s(985–1,594) vs. 1,400 s(1,092–1,686), P = 0.524] on and off treatment. During treatment, OT was longer in patients taking vorapaxar [561 s(422–654) vs. 419 s(343–514), P = 0.009], but LT was similar in vorapaxar and placebo arms [1,158 s(746–1,492) vs. 1,236 s(985–1,594), P = 0.277]. Vorapaxar prolongs OT and shortens LT, with favorable effects on thrombotic and thrombolytic status. In addition to its antiplatelet effect, vorapaxar may enhance endogenous thrombolysis, which is frequently impaired in coronary disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

GTT:

Global thrombosis test

LT:

Lysis time

OT:

Occlusion time

PAR:

Protease-activated receptor

PFT:

Platelet function tests

TAFI:

Thrombin activatable fibrinolysis inhibitor

TRACER:

Thrombin-receptor antagonist vorapaxar in acute coronary Syndromes

TRA 2°P-TIMI 50:

Thrombin receptor antagonist in secondary prevention of Atherothrombotic Ischemic Events (TRA 2°P-TIMI 50)–Thrombolysis in Myocardial Infarction (TIMI) 50 trial

TRAP:

Thrombin receptor activating peptide

References

  1. Barrabes JA, Galian L (2010) Endogenous thrombolysis. J Am Col Cardiol 55(19):2116–2117

    Article  Google Scholar 

  2. Bonello L, Tantry US, Marcucci R et al (2010) Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. J Am Coll Cardiol 56:919–933

    Article  PubMed  CAS  Google Scholar 

  3. Gorog DA, Fuster V (2013) Platelet function tests in clinical cardiology. J Am Coll Cardiol 61:2115–2129

    Article  PubMed  Google Scholar 

  4. Sweeny JM, Gorog DA, Fuster V (2009) Antiplatelet drug “resistance”. Part 1. Mechanisms and clinical measurements. Nat Rev Cardiol 6:273–282

    Article  PubMed  CAS  Google Scholar 

  5. Saraf S, Christopoulos C, Salha IB, Stott DJ, Gorog DA (2010) Impaired endogenous thrombolysis in acute coronary syndrome patients predicts cardiovascular death and nonfatal myocardial infarction. J Am Coll Cardiol 55(19):2107–2115

    Article  PubMed  Google Scholar 

  6. Sharma S, Farrington K, Kozarski R et al (2013) Impaired thrombolysis: a novel cardiovascular risk factor in end-stage renal disease. Eur Heart J 34(5):354–363

    Article  PubMed  CAS  Google Scholar 

  7. Taomoto K, Ohnishi H, Kuga Y et al (2010) Platelet function and spontaneous thrombolytic activity of patients with cerebral infarction assessed by the global thrombosis test. Pathophysiol Haemost Thromb 37(1):43–48

    Article  PubMed  Google Scholar 

  8. Nakajima S, Noguchi T, Taka T et al (2000) A global platelet test of thrombosis and thrombolysis detects a prothrombotic state in some patients with non-insulin dependent diabetes and in some patients with stroke. Platelets 11(8):459–466

    Article  PubMed  CAS  Google Scholar 

  9. Bodary PF, Wickenheiser KJ, Eitzman DT (2002) Recent advances in under-standing endogenous fibrinolysis: implications for molecular-based treatment of vascular disorders. Expert Rev Mol Med 4:1–10

    Article  PubMed  Google Scholar 

  10. Taher TH, Stang L, Gordon PA et al (2004) Clopidogrel does not induce fibrinolysis in healthy subjects. Thromb Res 114:97–100

    Article  PubMed  CAS  Google Scholar 

  11. Kovacs IB, Gorog DA, Yamamoto J (2006) Enhanced spontaneous thrombolysis: a new therapeutic challenge. J Thromb Thrombolysis 21:221–227

    Article  PubMed  CAS  Google Scholar 

  12. Tousoulis D, Antoniades C, Bosinakou E et al (2005) Effects of atorvastatin on reactive hyperaemia and the thrombosis-fibrinolysis system in patients with heart failure. Heart 91(1):27–31

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Undas A, Celinska-Löwenhoff M, Löwenhoff T et al (2006) Statins, fenofibrate, and quinapril increase clot permeability and enhance fibrinolysis in patients with coronary artery disease. J Thromb Haemost 4(5):1029–1036

    Article  PubMed  CAS  Google Scholar 

  14. Gorog DA (2010) Prognostic value of plasma fibrinolysis activation markers in cardiovascular disease. J Am Coll Cardiol 55(24):2701–2709

    Article  PubMed  CAS  Google Scholar 

  15. Bouma BN, Mosnier LO (2006) Thrombin activatable fibrinolysis inhibitor (TAFI)—how does thrombin regulate fibrinolysis? Ann Med 38(6):378–388

    Article  PubMed  CAS  Google Scholar 

  16. Becker RC, Moliterno DJ, Jennings LK et al (2009) Safety and tolerability of SCH 530348 in patients undergoing non-urgent percutaneous coronary intervention: a randomised, double-blind, placebo-controlled phase II study. Lancet 373:919–928

    Article  PubMed  CAS  Google Scholar 

  17. Tricoci P, Huang Z, Held C et al (2012) Thrombin-receptor antagonist vorapaxar in acute coronary syndromes. N Engl J Med 366(1):20–33

    Article  PubMed  CAS  Google Scholar 

  18. Morrow DA, Braunwald E, Bonaca MP et al (2012) TRA 2P–TIMI 50 Steering Committee and Investigators. Vorapaxar in the secondary prevention of atherothrombotic events. N Engl J Med 366(15):1404–1413

    Article  PubMed  CAS  Google Scholar 

  19. Yamamoto J, Yamashita T, Ikarugi H et al (2003) Gorog thrombosis test: a global in vitro test of platelet function and thrombolysis. Blood Coagul Fibrinolysis 14:31–39

    Article  PubMed  CAS  Google Scholar 

  20. Gorog DA, Yamamoto J, Saraf S et al (2011) The first direct comparison of platelet reactivity and thrombolytic status between Japanese and Western volunteers: possible relationship to the “Japanese paradox”. Int J Cardiol 152:43–48

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Gorog.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosser, G., Tricoci, P., Morrow, D. et al. PAR-1 antagonist vorapaxar favorably improves global thrombotic status in patients with coronary disease. J Thromb Thrombolysis 38, 423–429 (2014). https://doi.org/10.1007/s11239-014-1075-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-014-1075-4

Keywords

Navigation