Skip to main content
Log in

New single nucleotide polymorphisms associated with differences in platelets reactivity in patients with type 2 diabetes treated with acetylsalicylic acid: genome-wide association approach and pooled DNA strategy

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

The objective of this study was to use genome-wide association approach and pooled DNA strategy to search for new genomic loci associated with inter-individual differences in platelet reactivity in the diabetic patients during acetylsalicylic acid (ASA) treatment. Study cohort consisted of 297 diabetic patients who had been taking ASA (75 mg daily) for at least 3 months. We tested association of single nucleotide polymorphisms (SNPs) genotyped using high density microarray platform with several platelet reactivity assays, followed by individual genotyping of most significant SNPs identified in the microarray genomic scan. The highest statistical significance (p value of 0.0001–0.008 in individual genotyping) was observed for SNP located within the regulatory G-protein signaling (RGS) 7 gene (rs2502448) using recessive genetic model. The diabetic patients on ASA treatment and homozygotes for its minor allele were characterized by increased odds ratio of at 3.45 (confidence interval: 1.82–6.53) for high on ASA platelet reactivity (i.e. impaired ASA response) when compared with homozygotes for wild-type allele. The genome-wide approach might provide an opportunity to identify novel candidate genes and pathways related to platelet activation in diabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mortensen SB, Larsen SB, Grove EL et al (2010) Reduced platelet response to aspirin in patients with coronary artery disease and type 2 diabetes mellitus. Thromb Res 126:e318–e322

    Article  PubMed  CAS  Google Scholar 

  2. Davi G, Patrono C (2007) Platelet activation and atherothrombosis. N Engl J Med 357:2482–2494

    Article  PubMed  CAS  Google Scholar 

  3. Postula M, Kaplon-Cieslicka A, Rosiak M et al (2011) Genetic determinants of platelet reactivity during acetylsalicylic acid therapy in diabetic patients: evaluation of 27 polymorphisms within candidate genes. J Thromb Haemost 9:2291–2301

    Article  PubMed  CAS  Google Scholar 

  4. Nielsen HL, Kristensen SD, Thygesen SS et al (2008) Aspirin response evaluated by the VerifyNow aspirin system and light transmission aggregometry. Thromb Res 123:267–273

    Article  PubMed  CAS  Google Scholar 

  5. Kunicki TJ, Williams SA, Salomon DR et al (2009) Genetics of platelet reactivity in normal, healthy individuals. J Thromb Haemost 7:2116–2122

    Article  PubMed  CAS  Google Scholar 

  6. Chakroun T, Addad F, Abderazek F et al (2007) Screening for aspirin resistance in stable coronary artery patients by three different tests. Thromb Res 121:413–418

    Article  PubMed  CAS  Google Scholar 

  7. Gonzalez-Conejero R, Rivera J, Corral J et al (2005) Biological assessment of aspirin efficacy on healthy individuals: heterogeneous response or aspirin failure? Stroke 36:276–280

    Article  PubMed  CAS  Google Scholar 

  8. Janicki PK, Vealey R, Liu J et al (2011) Genome-wide association study using pooled DNA to identify candidate markers mediating susceptibility to postoperative nausea and vomiting. Anesthesiology 115:54–64

    Article  PubMed  Google Scholar 

  9. Macgregor S, Zhao ZZ, Henders A et al (2008) Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Res 36:e35

    Article  PubMed  Google Scholar 

  10. Liu JZ, McRae AF, Nyholt DR et al (2010) A versatile gene-based test for genome-wide association studies. Am J Hum Genet 87:139–145

    Article  PubMed  CAS  Google Scholar 

  11. Skol AD, Scott LJ, Abecasis GR et al (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38:209–213

    Article  PubMed  CAS  Google Scholar 

  12. Dupont WD, Plummer WD (1990) Power and sample size calculations. A review and computer program. Control Clin Trials 11:116–128

    Article  PubMed  CAS  Google Scholar 

  13. Haubelt H, Anders C, Vogt A et al (2005) Variables influencing Platelet Function Analyzer-100 closure times in healthy individuals. Br J Haematol 130:759–767

    Article  PubMed  Google Scholar 

  14. Mathias RA, Kim Y, Sung H et al (2010) A combined genome-wide linkage and association approach to find susceptibility loci for platelet function phenotypes in European American and African American families with coronary artery disease. BMC Med Genomics 3:22

    Article  PubMed  Google Scholar 

  15. De Vries L, Gist Farquhar M (1999) RGS proteins: more than just GAPs for heterotrimeric G proteins. Trends Cell Biol 9:138–144

    Article  PubMed  Google Scholar 

  16. Austin H, De Staercke C, Lally C et al (2011) New gene variants associated with venous thrombosis: a replication study in White and Black Americans. J Thromb Haemost 9:489–495

    Article  PubMed  CAS  Google Scholar 

  17. Bezemer ID, Bare LA, Doggen CJ et al (2008) Gene variants associated with deep vein thrombosis. JAMA 299:1306–1314

    Article  PubMed  CAS  Google Scholar 

  18. Pearson JV, Huentelman MJ, Halperin RF et al (2007) Identification of the genetic basis for complex disorders by use of pooling-based genomewide single-nucleotide-polymorphism association studies. Am J Hum Genet 80:126–139

    Article  PubMed  CAS  Google Scholar 

  19. Signarvic RS, Cierniewska A, Stalker TJ et al (2010) RGS/Gi2alpha interactions modulate platelet accumulation and thrombus formation at sites of vascular injury. Blood 116:6092–6100

    Article  PubMed  CAS  Google Scholar 

  20. Gegenbauer K, Elia G, Blanco-Fernandez A et al (2012) Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood 119:3799–3807

    Article  PubMed  CAS  Google Scholar 

  21. Rowley JW, Oler AJ, Tolley ND et al (2011) Genome-wide RNA-seq analysis of human and mouse platelet transcriptomes. Blood 118:e101–e111

    Article  PubMed  CAS  Google Scholar 

  22. Ma P, Cierniewska A, Signarvic R et al (2012) A newly identified complex of spinophilin and the tyrosine phosphatase, SHP-1, modulates platelet activation by regulating G protein-dependent signaling. Blood 119:1935–1945

    Article  PubMed  CAS  Google Scholar 

  23. Kim SD, Sung HJ, Park SK et al (2006) The expression patterns of RGS transcripts in platelets. Platelets 17:493–497

    Article  PubMed  CAS  Google Scholar 

  24. Garcia A, Prabhakar S, Hughan S et al (2004) Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood 103:2088–2095

    Article  PubMed  CAS  Google Scholar 

  25. Johnson AD, Yanek LR, Chen MH et al (2010) Genome-wide meta-analyses identifies seven loci associated with platelet aggregation in response to agonists. Nat Genet 42:608–613

    Article  PubMed  CAS  Google Scholar 

  26. Gagnon AW, Murray DL, Leadley RJ (2002) Cloning and characterization of a novel regulator of G protein signalling in human platelets. Cell Signal 14:595–606

    Article  PubMed  CAS  Google Scholar 

  27. Jedema HP, Gold SJ, Gonzalez-Burgos G et al (2008) Chronic cold exposure increases RGS7 expression and decreases alpha(2)-autoreceptor-mediated inhibition of noradrenergic locus coeruleus neurons. Eur J Neurosci 27:2433–2443

    Article  PubMed  Google Scholar 

  28. Shi J, Damjanoska KJ, Zemaitaitis B et al (2006) Alterations in 5-HT2A receptor signaling in male and female transgenic rats over-expressing either Gq or RGS-insensitive Gq protein. Neuropharmacology 51:524–535

    Article  PubMed  CAS  Google Scholar 

  29. Niwa N, Nerbonne JM (2010) Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. J Mol Cell Cardiol 48:12–25

    Article  PubMed  CAS  Google Scholar 

  30. Hill TD, White JG, Rao GH (1989) Role of glutathione and glutathione peroxidase in human platelet arachidonic acid metabolism. Prostaglandins 38:21–32

    PubMed  CAS  Google Scholar 

  31. Guerrero JA, Rivera J, Quiroga T et al (2011) Novel loci involved in platelet function and platelet count identified by a genome-wide study performed in children. Haematologica 96:1335–1343

    Article  PubMed  CAS  Google Scholar 

  32. Michelson AD (2009) Methods for the measurement of platelet function. Am J Cardiol 103:20A–26A

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Dr Postula was supported by a Fulbright Fellowship from USA State Department. The AVOCADO study was supported financially as part of the research grant from the Polish Pharmaceutical Company ADAMED for a Young Scientist 2007 Award [grant number: 1WR DAR1/2007] and Polish Cardiac Society Club 30 grant 2010. The authors thank Thutrang Nguyen, B.A. from the SNP Genotyping Core Facility at Children’s Hospital Boston, Massachusetts, for performing the custom Sequenom iPLEX assay.

Disclosure of conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marek Postula.

Additional information

Marek Postula and Piotr K. Janicki contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 89 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postula, M., Janicki, P.K., Rosiak, M. et al. New single nucleotide polymorphisms associated with differences in platelets reactivity in patients with type 2 diabetes treated with acetylsalicylic acid: genome-wide association approach and pooled DNA strategy. J Thromb Thrombolysis 36, 65–73 (2013). https://doi.org/10.1007/s11239-012-0823-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-012-0823-6

Keywords

Navigation