Skip to main content

Advertisement

Log in

Rapid melting curve analysis for genetic variants that underlie inter-individual variability in stable warfarin dosing

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Warfarin anticoagulation therapy is complicated by its narrow therapeutic index and by wide inter-individual differences in dosing requirements arising, in part, from genetic factors. The present report describes the development, validation and feasibility testing of a rapid genotyping assay that concurrently detects the CYP2C9*2 and *3 variants along with the VKORC1 C1173T polymorphism. The study employed melting curve analysis using labeled probes and compared two detection instruments (the HR-1 and the R.A.P.I.D. LT) to two previously validated methods, 5′ nuclease allelic discrimination (Taqman®) assay and cycle sequencing. The HR-1 detected 189 true negatives and 113 true positives; 1 wild-type sample was mistyped as a heterozygote by both instruments. Sequencing of that sample confirmed it to be a CC homozygote; however, a rare C > T polymorphism was discovered 1 base 5′ from the *2 polymorphic site, presumably causing the mistaken genotype by melting curve. Both methods had sensitivity = 1.00 and specificity > 0.99. Combined with a method for rapid buccal swab DNA extraction, genotyping results were obtained in a median of 59 min. These methods should facilitate genotype-driven warfarin dosing in “real-time” clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Carlquist JF, Anderson JL (2004) Pharmacogenomics in cardiovascular medicine. Drug Dev Res 62:180–190

    Article  CAS  Google Scholar 

  2. Anderson JL, Carlquist JF, Horne BD, Muhlestein JB (2003) Cardiocascular pharmacogenomics: current status, future prospects. J Cardiovasc Pharmacol Therapeut 8:71–83

    Article  Google Scholar 

  3. Panneerselvam S, Baglin C, Lefort W, Baglin T (1998) Analysis of risk factors for over-anticoagulation in patients receiving long-term warfarin. Br J Haematol 103(2):422–424

    Article  PubMed  CAS  Google Scholar 

  4. Fihn SD, McDonell M, Martin D, Henikoff J, Vermes D, Kent D, White RH (1993) Risk factors for complications of chronic anticoagulation. A multicenter study. Warfarin Optimized Outpatient Follow-up Study Group. Ann Intern Med 118(7):511–520

    PubMed  CAS  Google Scholar 

  5. Weiss P, Halkin H, Almog S (1986) The negative impact of biological variation in the effect and clearance of warfarin on methods for prediction of dose requirements. Thromb Haemost 56(3):371–375

    PubMed  CAS  Google Scholar 

  6. Rettie AE, Wienkers LC, Gonzalez FJ, Trager WF, Korzekwa KR (1994) Impaired (S)-warfarin metabolism catalysed by the R144C allelic variant of CYP2C9. Pharmacogenetics 4(1):39–42

    Article  PubMed  CAS  Google Scholar 

  7. Furuya H, Fernandez-Salguero P, Gregory W, Taber H, Steward A, Gonzalez FJ, Idle JR (1995) Genetic polymorphism of CYP2C9 and its effect on warfarin maintenance dose requirement in patients undergoing anticoagulation therapy. Pharmacogenetics 5(6):389–392

    Article  PubMed  CAS  Google Scholar 

  8. Bachmann K (2002) Genotyping and phenotyping the cytochrome p-450 enzymes. Am J Ther 9(4):309–316

    Article  PubMed  Google Scholar 

  9. Stubbins MJ, Harries LW, Smith G, Tarbit MH, Wolf CR (1996) Genetic analysis of the human cytochrome P450 CYP2C9 locus. Pharmacogenetics 6(5):429–439

    Article  PubMed  CAS  Google Scholar 

  10. Yasar U, Eliasson E, Dahl ML, Johansson I, Ingelman-Sundberg M, Sjoqvist F (1999) Validation of methods for CYP2C9 genotyping: frequencies of mutant alleles in a Swedish population. Biochem Biophys Res Commun 254(3):628–631

    Article  PubMed  CAS  Google Scholar 

  11. Crespi CL, Miller VP (1997) The R144C change in the CYP2C9*2 allele alters interaction of the cytochrome P450 with NADPH:cytochrome P450 oxidoreductase. Pharmacogenetics 7(3):203–210

    Article  PubMed  CAS  Google Scholar 

  12. Takanashi K, Tainaka H, Kobayashi K, Yasumori T, Hosakawa M, Chiba K (2000) CYP2C9 Ile359 and Leu359 variants: enzyme kinetic study with seven substrates. Pharmacogenetics 10(2):95–104

    Article  PubMed  CAS  Google Scholar 

  13. Higashi MK, Veenstra DL, Kondo LM, Wittkowsky AK, Srinouanprachanh SL, Farin FM, Rettie AE (2002) Association between CYP2C9 genetic variants and anticoagulation-related outcomes during warfarin therapy. JAMA 287(13):1690–1698

    Article  PubMed  CAS  Google Scholar 

  14. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, Blough DK, Thummel KE, Veenstra DL, Rettie AE (2005) Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med 352(22):2285–2293

    Article  PubMed  CAS  Google Scholar 

  15. Li T, Chang CY, Jin DY, Lin PJ, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544

    Article  PubMed  CAS  Google Scholar 

  16. D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V, Grandone E, Margaglione M (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649

    Article  PubMed  CAS  Google Scholar 

  17. Yuan HY, Chen JJ, Lee MT, Wung JC, Chen YF, Charng MJ, Lu MJ, Hung CR, Wei CY, Chen CH, Wu JY, Chen YT (2005) A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet 14(13):1745–1751

    Article  PubMed  CAS  Google Scholar 

  18. Carlquist JF, Horne BD, Muhlestein JB, Lappe DL, Whiting BM, Kolek MJ, Clarke JL, James BC, Anderson JL (2006) Genotypes of the cytochrome p450 isoform, CYP2C9, and the vitamin K epoxide reductase complex subunit 1 conjointly determine stable warfarin dose: a prospective study. J Thromb Thrombolysis 22(3):191–197

    Article  PubMed  CAS  Google Scholar 

  19. Wittwer CT, Reed GH, Gundry CN, Vandersteen JG, Pryor RJ (2003) High-resolution genotyping by amplicon melting analysis using LCGreen. Clin Chem 49(6):853–860

    Article  PubMed  CAS  Google Scholar 

  20. Shireman TI, Mahnken JD, Howard PA, Kresowik TF, Hou Q, Ellerbeck EF (2006) Development of a contemporary bleeding risk model for elderly warfarin recipients. Chest 130(5):1390–1396

    Article  PubMed  Google Scholar 

  21. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, Wood P, Kesteven P, Daly AK, Kamali F (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant from the Intermountain Healthcare Deseret Foundation, Salt Lake City, UT, USA (JFC) and a grant from the Critical-Path Institute, Tucson, AZ and Bethesda, MD, USA (JFC and JLA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John F. Carlquist.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlquist, J.F., McKinney, J.T., Nicholas, Z.P. et al. Rapid melting curve analysis for genetic variants that underlie inter-individual variability in stable warfarin dosing. J Thromb Thrombolysis 26, 1–7 (2008). https://doi.org/10.1007/s11239-007-0077-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11239-007-0077-x

Keywords

Navigation