Skip to main content

Advertisement

Log in

Modern approaches to the production of carbon materials from vegetable biomass

  • Published:
Theoretical and Experimental Chemistry Aims and scope

Recent trends in methods for the preparation of porous carbon materials (PCM) from vegetable biomass by physical and chemical activation methods are analyzed. Data on the effect of activating agents and also other parameters on the textural characteristics of PCMs were classified. A new direction for the production of PCMs was discovered in the use of high-ash biomass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. W. Zhang, Fuel Process. Technol., 91, No. 8, 866–876 (2010).

    Article  CAS  Google Scholar 

  2. T. Hanaoka, Y. Liua, K. Matsunaga, et al., Fuel Process. Technol., 91, No. 8, 859–865 (2010).

    Article  CAS  Google Scholar 

  3. S. G. Zavarukhin, V. A. Yakovlev, V. N. Parmon, et al., Khim. Tekhnol. Topliv Masel, 1, 3–7 (2010).

    Google Scholar 

  4. V. O. Dundich and V. A. Yakovlev, Khim. Interes. Ustoichiv. Razvit., 5, 527–532 (2009).

    Google Scholar 

  5. M. Snore, P. Myaki-Arvela, and I. L. Simakova, Sverkhkritich. Flyuids: Teor. Prakt., 4, No. 1, 3–17 (2009).

    Google Scholar 

  6. V. A. Yakovlev, S. A. Khromova, O. V. Sherstyuk, et al., Catal. Today, 144, Nos. 3/4, 362–366 (2009).

    Article  CAS  Google Scholar 

  7. D. C. Elliott, Energy Fuels, 21, No. 3, 1792–1815 (2007).

    Article  CAS  Google Scholar 

  8. E. Tomás-Pejó, J. M. Oliva, A. González, et al., Fuel, 88, No. 11, 2142–2147 (2009).

    Article  CAS  Google Scholar 

  9. S. D. Varfolomeev, E. N. Efremenko, and L. P. Krylova, Usp. Khim., 79, No. 6, 544–564 (2010).

    Google Scholar 

  10. A. Abuadala and I. Dincer, Thermochim. Acta, 507/508, No. 11, 127–134 (2010).

    Article  CAS  Google Scholar 

  11. J. Kopyscinski, T. J. Schildhauer, and S. M. A. Biollaz, Fuel, 89, No. 8, 1763–1783 (2010).

    Article  CAS  Google Scholar 

  12. X. Tong, Y. Ma, and Y. Li, Appl. Catal. A, 385, Nos. 1/2, 1–13 (2010).

    CAS  Google Scholar 

  13. J. D. P. Araújo, C. A. Grande, and A. E. Rodrigues, Chem. Eng. Res. Design, 88, No. 8, 1024–1032 (2010).

    Article  CAS  Google Scholar 

  14. A. Karthikeyan and N. Sivakumar, Bioresour. Technol., 101, No. 14, 5552–5556 (2010).

    Article  CAS  Google Scholar 

  15. T. C. Drage, A. Arenillas, K. M. Smith, et al., Fuel, 86, Nos. 1/2, 22–31 (2007).

    Article  CAS  Google Scholar 

  16. A. C. Dillon and M. J. Heben, Appl. Phys. A, 72, No. 2, 133–142 (2001).

    Article  CAS  Google Scholar 

  17. V. C. Menon and S. Komarneni, J. Porous Mater., 5, No. 1, 43–58 (1998).

    Article  CAS  Google Scholar 

  18. S. Sircar, T. C. Golden, and M. B. Rao, Carbon, 34, No. 1, 1–12 (1996).

    Article  CAS  Google Scholar 

  19. M. J. Lázaro, M. E. Gálvez, S. Artal, et al., J. Anal. Appl. Pyrolysis., 78, No. 2, 301–315 (2007).

    Article  CAS  Google Scholar 

  20. J. C. Naranjo, A. Córdoba, L. Giraldo, et al., J. Mol. Catal. B, 66, Nos. 1/2, 166–171 (2010).

    Article  CAS  Google Scholar 

  21. H. T. Gomes, S. M. Miranda, M. J. Sampaio, et al., Catal. Today, 151, Nos. 1/2, 153–158 (2010).

    Article  CAS  Google Scholar 

  22. S. Flandrois and B. Simon, Carbon, 37, No. 2, 165–180 (1999).

    Article  CAS  Google Scholar 

  23. K. Shindo, M. Arakawa, and T. Hirai, J. Power Sources, 110, No. 1, 46–51 (2002).

    Article  CAS  Google Scholar 

  24. Y. Chen, Y. Zhu, Z. Wang, et al., Adv. Colloid Interface Sci., 163, No. 1, 39–52 (2011).

    Article  CAS  Google Scholar 

  25. K. Y. Foo and B. H. Hameed, Adv. Colloid Interface Sci., 152, Nos. 1/2, 39–47 (2009).

    Article  CAS  Google Scholar 

  26. G. T.-K. Fey, Ch.-L. Chen, J. Power Sources, 97/98, 47–51 (2001).

    Article  Google Scholar 

  27. G. K. Nikonov, L. F. Burkovskaya, N. A. Artamonova, and G. L. Chelokhsaeva, Gidroliz. Lesokhim. Prom-st’, 7, 18–19 (1990).

    Google Scholar 

  28. V. B. Fenelonov, Porous Carbon [in Russian], Inst. Kataliza Sibirsk. Otd. RAS, Novosibirsk (1995).

    Google Scholar 

  29. V. B. Fenelonov, Introduction to Physical Chemistry of the Formation of Supramolecular Structure in Adsorbents and Catalysts, Izd. Sibirsk. Otd. RAS, Novosibirsk (2004).

    Google Scholar 

  30. T. V. Ryazanova, G. V. Tikhomirova, and I. S. Pochekutov, Ros. Khim. Zhurn., 48, No. 3, 89–94 (2004).

    Google Scholar 

  31. F.-Ch. Wu, Ru-L. Tseng, J. Colloid Interface Sci., 294, No. 1, 21–30 (2006).

    Article  CAS  Google Scholar 

  32. M. J. Prauchner and F. Rodriguez-Reinoso, Micropor. Mesopor. Mater., 109, Nos. 1–3, 581–584 (2008).

    Article  CAS  Google Scholar 

  33. B. H. Hameed and M. I. El-Khaiary, J. Hazard. Mater., 157, Nos. 2/3, 344–351 (2008).

    Article  CAS  Google Scholar 

  34. T. Zhang, W. P. Walawender, L. T. Fan, et al., Chem. Eng. J., 105, Nos. 1/2, 53–59 (2004).

    Article  CAS  Google Scholar 

  35. A. Macias-García, M. J. Bernalte Garcia, M. A. Díaz-Díez, and A. H. Jiménez, Wood Sci. Technol., 37, No. 5, 385–394 (2004).

    Article  CAS  Google Scholar 

  36. A. K. Kercher and D. C. Nagle, Carbon, 41, No. 1, 3–13 (2003).

    Article  CAS  Google Scholar 

  37. V. Boonamnuayvitaya, S. Sae-ung, and W. Tanthapanichakoon, Sep. Purif. Technol., 42, No. 2, 159–168 (2005).

    Article  CAS  Google Scholar 

  38. J. V. Nabais, P. Carrott, M. M. L. R. Carrott, et al., Bioresour. Technol., 99, No. 15, 7224–7231 (2008).

    Article  CAS  Google Scholar 

  39. J. M. Valente Nabais, P. Nunes, P. J. M. Carrott, et al., Fuel Process. Technol., 89, No. 3, 262–268 (2008).

    Article  CAS  Google Scholar 

  40. A. Aworn, P. Thiravetyan, and W. Nakbanpote, Colloids Surfaces A, 333, Nos. 1–3, 19–25 (2009).

    Article  CAS  Google Scholar 

  41. Ch.-F. Chang, Ch.-Y. Chang, and W.-T. Tsai, J. Colloid Interface Sci., 232, No. 1, 45–49 (2000).

    Article  CAS  Google Scholar 

  42. S. Román, J. F. Gonzalez, C. M. Gonzalez-Garcia, and F. Zamora, Fuel Process. Technol., 89, No. 8, 715–720 (2008).

    Article  CAS  Google Scholar 

  43. C. A. Toles, W. E. Marshall, L. H. Wartelle, and A. McAloon, Bioresour. Technol., 75, No. 3, 197–203 (2000).

    Article  CAS  Google Scholar 

  44. J. Guo and A. C. Lua, J. Colloid Interface Sci., 251, No. 2, 242–247 (2002).

    Article  CAS  Google Scholar 

  45. R. M. Suzuki, A. D. Andrade, J. C. Sousa, and M. C. Rollemberg, Bioresour. Technol., 98, No. 10, 1985–1991 (2007).

    Article  CAS  Google Scholar 

  46. N. Yoshizawa, K. Maruyama, Y. Yamada, and M. Zielinska-Blajet, Fuel, 79, No. 12, 1461–1466 (2000).

    Article  CAS  Google Scholar 

  47. V. S. Petrov, Y. Y. Simkin, and O. K. Krylova, Khim. Interes. Ustoichiv. Razvit., 4, 389–394 (1996).

    Google Scholar 

  48. G. V. Plaksin, O. N. Baklanova, V. A. Drozdov, et al., Khim. Interes. Ustoichiv. Razvit., 8, 715–721 (2000).

    CAS  Google Scholar 

  49. M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Colloids Surfaces A, 312, Nos. 2/3, 131–135 (2008).

    Article  CAS  Google Scholar 

  50. A. Baçaoui, A. Yaacoubi, A. Dahbi, et al., Carbon, 39, No. 3, 425–432 (2001).

    Article  Google Scholar 

  51. P. T. Williams and A. R. Reed, J. Anal. Appl. Pyrolysis, 70, No. 2, 563–577 (2003).

    Article  CAS  Google Scholar 

  52. N. Tancredi, N. Medero, F. Möller, et al., J. Colloid Interface Sci., 279, No. 2, 357–363 (2004).

    Article  CAS  Google Scholar 

  53. P. Milich, F. Möller, J. Piriz, et al., Sep. Sci. Technol., 37, No. 6, 1453–1467 (2002).

    Article  CAS  Google Scholar 

  54. A. D. Simonov, T. I. Mishenko, N. A. Yazykov, and V. N. Parmon, Chem. Sustain. Develop., 11, No. 1, 277–283 (2003).

    CAS  Google Scholar 

  55. P. M. Eletskii, V. A. Yakovlev, V. V. Kaichev, et al., Kinet. Katal., 49, No. 2, 321–328 (2008).

    Article  Google Scholar 

  56. G. K. Boreskov, Heterogeneous Catalysis [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  57. V. A. Borodulya and L. M. Vinogradov, Combustion of Solid Fuel in Fluidized Bed [in Russian], Nauka i Tekhnika, Minsk (1980), pp. 50–69.

    Google Scholar 

  58. E. A. Ustinov, V. B. Fenelonov, V. A. Yakovlev, and P. M. Eletskii, Kinet. Katal., 48, No. 4, 629–638 (2007).

    Article  CAS  Google Scholar 

  59. D. W. McKee, Fuel, 62, No. 2, 170–175 (1983).

    Article  CAS  Google Scholar 

  60. A. M. Youssef, N. R. E. Radwan, I. Abdel-Gawad, and G. A. A. Singer, Colloids Surfaces A, 252, Nos. 2/3, 143–151 (2005).

    Article  CAS  Google Scholar 

  61. M. Molina-Sabio and F. Rodríguez-Reinoso, Colloids Surfaces A, 241, Nos. 1–3, 15–25 (2004).

    Article  CAS  Google Scholar 

  62. A. M. Youssef, Th. El-Nabarawy, and S. E. Samra, Colloids Surfaces A, 235, Nos. 1–3, 153–163 (2004).

    Article  CAS  Google Scholar 

  63. Y. Nakagawa, M. Molina-Sabio, and F. Rodríguez-Reinoso, Micropor. Mesopor. Mater., 103, Nos. 1–3, 29–34 (2007).

    Article  CAS  Google Scholar 

  64. F. Rodriguez-Reinoso, Y. Nakagawa, and J. Silvestre-Albero, Micropor. Mesopor. Mater., 115, No. 3, 603–608 (2008).

    Article  CAS  Google Scholar 

  65. Zh. Zhu, A. Li, and L. Yan, J. Colloid Interface Sci., 316, No. 2, 628–634 (2007).

    Article  CAS  Google Scholar 

  66. A. Ahmadpour and D. D. Do, Carbon, 34, No. 4, 471–476 (1996).

    Article  CAS  Google Scholar 

  67. J. S. Macedo, L. Otubo, O. P. Ferreira, et al., Micropor. Mesopor. Mater., 107, No. 3, 276–285 (2008).

    Article  CAS  Google Scholar 

  68. Zh. Hu and M. P. Srinivasan, Micropor. Mesopor. Mater., 43, No. 3, 267–275 (2001).

    Article  CAS  Google Scholar 

  69. E. Yagmur, M. Ozmak, and Z. Aktas, Fuel, 87, Nos. 15/16, 3278–3285 (2008).

    Article  CAS  Google Scholar 

  70. B. S. Girgis, A. A. Attia, and N. A. Fathy, Colloids Surfaces A, 299, Nos. 1–3, 79–87 (2007).

    Article  CAS  Google Scholar 

  71. Y. Guo and D. A. Rockstraw, Bioresour. Technol., 98, No. 8, 1513–1521 (2007).

    Article  CAS  Google Scholar 

  72. M. Molina-Sabio and F. Rodríguez-Reinoso, Colloids Surfaces A, 241, Nos. 1–3, 15–25 (2004).

    Article  CAS  Google Scholar 

  73. A. W. M. Ip, J. P. Barford, and G. McKay, Bioresour. Technol., 99, No. 18, 8909–8916 (2008).

    Article  CAS  Google Scholar 

  74. J. Guo and A. Ch. Lua, J. Colloid Interface Sci., 254, No. 2, 227–233 (2002).

    Article  CAS  Google Scholar 

  75. F. Zhang, H. Ma, J. Chen, et al., Bioresour. Technol., 99, No. 11, 4803–4808 (2008).

    Article  CAS  Google Scholar 

  76. I. A. W. Tan, A. L. Ahmad, and B. H. Hameed, Chem. Eng. J., 137, No. 3, 462–470 (2008).

    Article  CAS  Google Scholar 

  77. R.-L. Tseng, J. Colloid Interface Sci., 303, No. 2, 494–502 (2006).

    Article  CAS  Google Scholar 

  78. R.-L. Tseng and S.-K. Tseng, J. Colloid Interface Sci., 287, No. 2, 428–437 (2005).

    Article  CAS  Google Scholar 

  79. V. Fierro, V. Torné-Fernández, and A. Celzard, Micropor. Mesopor. Mater., 101, No. 3, 419–431 (2007).

    Article  CAS  Google Scholar 

  80. G. H. Oh and C. R. Park, Fuel, 81, No. 3, 327–336 (2002).

    Article  CAS  Google Scholar 

  81. E. Mora, C. Blanco, J. A. Pajares, et al., J. Colloid Interface Sci., 298, No. 1, 341–347 (2006).

    Article  CAS  Google Scholar 

  82. A. N. Wennerberg, “Process for the production of active carbons,” Pat. 3624004 USA, Standard Oil Company (USA), Publ. Nov. 30, 1971.

  83. A. N. Wennerberg, T. M. O’Grady, “Active carbon process and composition,” Pat. 4082694 USA, IC B 01J 21/18, C 01 B 31/08, C 01 B 31/12, Standard Oil Company (USA), Publ. Apr. 4, 1978.

  84. Ch. N. Barnakov, S. K. Seit-Ablaeva, A. P. Kozlov, et al., “Method for the production of nanostructured carbon material,” Pat. 2206394 Russian Federation, IPC7 B 01 J 20/20, C 01 B 31/12, Applicant and Patent Holder, Institute of Coal and Coal Chemistry, Siberian Branch, Russian Academy of Sciences; G. K. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Publ. June 20, 2003.

  85. H. Marsh, D. Crawford, T. M. O’Grandy, and A. Wennerberg, Carbon, 20, No. 2, 137–138 (1982).

    Article  Google Scholar 

  86. H. Marsh, D. Crawford, T. M. O’Grandy, and A. Wennerberg, Carbon, 20, No. 5, 419–426 (1982).

    Article  CAS  Google Scholar 

  87. H. Marsh, D. S. Yan, T. M. O’Grandy, and A. Wennerberg, Carbon, 22, No. 6, 603–611 (1984).

    Article  CAS  Google Scholar 

  88. B. Y. Jibril, R. S. Al-Maamari, G. Hegde, et al., J. Anal. Appl. Pyrolysis, 80, No. 2, 277–282 (2007).

    Article  CAS  Google Scholar 

  89. V. Ruiz, C. Blanco, E. Raymundo-Piñero, et al., Electrochim. Acta, 52, No. 15, 4969–4973 (2007).

    Article  CAS  Google Scholar 

  90. K. Kierzek, E. Frackowiak, G. Lota, et al., Electrochim. Acta, 49, No. 4, 515–523 (2004).

    Article  CAS  Google Scholar 

  91. A. Perrin, A. Celzard, A. Albiniak, et al., Micropor. Mesopor. Mater, 81, Nos. 1–3, 31–40 (2005).

    Article  CAS  Google Scholar 

  92. M. Sánchez-Polo and J. Rivera-Utrilla, Appl. Catal. B, 67, Nos. 1/2, 113–120 (2006).

    Google Scholar 

  93. L. Zubizarreta, A. Arenillas, J.-P. Pirard, et al., Micropor. Mesopor. Mater., 115, No. 3, 480–490 (2008).

    Article  CAS  Google Scholar 

  94. M. J. B. Evans, E. Halliop, and J. A. F. MacDonald, Carbon, 37, No. 2, 269–274 (1999).

    Article  CAS  Google Scholar 

  95. M. A. Lillo-Ródenas, D. Cazorla-Amorós, A. Linares-Solano, Carbon, 41, No. 2, 267–275 (2003).

    Article  Google Scholar 

  96. N. Yoshizawa, K. Maruyama, Y. Yamada, and E. Ishikawa, Fuel, 81, No. 13, 1717–1722 (2002).

    Article  CAS  Google Scholar 

  97. P. M. Eletskii, Synthesis and Investigation of Carbon–Silica Nanocomposites, Meso-and Microporous Carbon Materials from High-Ash Biomass, Thesis for Candidate of Chemical Sciences [in Russian], Novosibirsk (2009).

  98. P. M. Eletskii, V. A. Yakovlev, V. B. Fenelonov, and V. N. Parmon, Kinet. Katal., 49, No. 5, 741–753 (2008).

    Article  CAS  Google Scholar 

  99. J. Diaz-Terán, D. M. Nevskaia, J. L. G. Fierro, et al., Micropor. Mesopor. Mater., 60, Nos. 1–3, 173–181 (2003).

    Article  CAS  Google Scholar 

  100. J. Hayashi, T. Horikawa, I. Takeda, et al., Carbon, 40, No. 13, 2381–2386 (2002).

    Article  CAS  Google Scholar 

  101. D. Adinata, W. M. A. W. Daud, and M. K. Aroua, Bioresour. Technol., 98, No. 1, 145–149 (2007).

    Article  CAS  Google Scholar 

  102. D. W. McKee, Fuel, 62, No. 2, 170–175 (1983).

    Article  CAS  Google Scholar 

  103. P. M. Yeletsky, V. A. Yakovlev, M. S. Mel’gunov, and V. N. Parmon, Micropor. Mesopor. Mater., 121, Nos. 1–3, 34–40 (2009).

    Article  CAS  Google Scholar 

  104. E. A. Ustinov, V. B. Fenelonov, V. A. Yakovlev, and P. M. Eletskii, Kinet. Katal., 48, No. 4, 629–638 (2007).

    Article  CAS  Google Scholar 

  105. A. I. Zakharov, A. V. Belyakov, and A. N. Tsvigunov, Steklo Keram., 9/10, 37–41 (1993).

    Google Scholar 

  106. L. V. Saprykin and N. V. Kiseleva, Khim. Dreves., 6, 3–7 (1990).

    Google Scholar 

  107. L. A. Zemnukhova, A. G. Egorov, G. A. Fedorishcheva, et al., Neorgan. Mater., 42, No. 1, 27–32 (2006).

    Google Scholar 

  108. S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, and P. Raghavan, J. Mater. Sci., 38, No. 15, 3159–3168 (2003).

    Article  CAS  Google Scholar 

  109. S. Huang, S. Jing, J. Wang, et al., Powder Technol., 117, No. 3, 232–238 (2001).

    Article  CAS  Google Scholar 

  110. G. T. Adylov, Sh. A. Faiziev, M. S. Paizullakhanov, et al., Letters to ZhTF, 29, No. 6, 7–13 (2003).

    Google Scholar 

  111. R. V. Krishnarao, M. M. Godkhindi, Ceram. Int., 18, No. 4, 243–249 (1992).

    Article  CAS  Google Scholar 

  112. B. K. Padhi, C. Patnaik, Ceram. Int., 21, No. 3, 213–220 (1995).

    Article  CAS  Google Scholar 

  113. J. C. C. Freitas, J. S. Moreira, F. G. Emmerich, and T. J. Bonagamba, J. Non-Cryst. Solids, 341, Nos. 1–3, 77–85 (2004).

    Article  CAS  Google Scholar 

  114. T. B. Ghosh, K. C. Nandi, H. N. Acharya, and D. Mukhrjee, Mater. Lett., 11, Nos. 1/2, 6–9 (1991).

    Article  CAS  Google Scholar 

  115. J.-M. Chen and F. W. Chang, Ind. Eng. Chem. Res., 30, No. 10, 2241–2247 (1991).

    Article  CAS  Google Scholar 

  116. T. Radhika and S. Sugunan, J. Mol. Catal. A, 250, Nos. 1/2, 169–176 (2006).

    CAS  Google Scholar 

  117. F.-W. Chang, W.-Y. Kuo, and H.-C. Yang, Appl. Catal. A, 288, Nos. 1/2, 53–61 (2005).

    CAS  Google Scholar 

  118. F.-W. Chang, H.-C. Yang, and L. S. Roselin, W.-Y. Kuo, Appl. Catal. A, 304, 30–39 (2006).

    Article  CAS  Google Scholar 

  119. D. Kalderis, S. Bethanis, P. Paraskeva, and E. Diamadopoulos, Bioresour. Technol., 99, No. 15, 6809–6816 (2008).

    Article  CAS  Google Scholar 

  120. Y. Guo and D. A. Rockstraw, Micropor. Mesopor. Mater., 100, No. 1–3, 12–19 (2007).

    Article  CAS  Google Scholar 

  121. M. M. Mohamed, J. Colloid Interface Sci., 272, No. 1, 28–34 (2004).

    Article  CAS  Google Scholar 

  122. Y. Guo and S. Yang, K. Yu, Mater. Chem. Phys., 74, No. 3, 320–323 (2002).

    Article  CAS  Google Scholar 

  123. Y. Guo, K. Yu, Z. Wang, and H. Xu, Carbon, 41, No. 8, 1645–1648 (2003).

    Article  CAS  Google Scholar 

  124. V. A. Yakovlev, P. M. Yeletsky, M. Yu. Lebedev, et al., Chem. Eng. J., 134, Nos. 1–3, 246–255 (2007).

    Article  CAS  Google Scholar 

  125. V. I. Posypaiko and E. A. Alekseeva (eds.), Melting Diagrams of Salt Systems [in Russian], Metallurgiya, Moscow (1977), Vol. 2.

  126. D. P. Xu, S.-H. Yoon, I. Mochida, et al., Micropor. Mesopor. Mater., 115, No. 3, 461–468 (2008).

    Article  CAS  Google Scholar 

  127. Z. Ma, T. Kyotani, Z. Liu, et al., Chem. Mater., 13, No. 12, 4413–4415 (2001).

    Article  CAS  Google Scholar 

  128. P. Chan-ho, Ch. Hyuk, K. Ji-man, “Mesoporous carbon molecular sieve and supported catalyst employing the same,” Pat. 7220697 USA, Samsung SDI Co., Ltd. (S. Korea), Publ. May 22, 2007.

  129. P. M. Eletskii, V. A. Yakovlev, V. N. Parmon, “Method of production of mesoporous carbon material,” Pat. 2366501 Russian Federation, IPC B 01 J 20/20, C 01 B 31/00, Applicant and patent holder G. K. Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, Publ. Sept. 10, 2009.

  130. L. J. Kennedy, J. J. Vijaya, and G. Sekaran, Mater. Chem. Phys., 91, Nos. 2/3, 471–476 (2005).

    Article  CAS  Google Scholar 

Download references

The work was carried out with support from the Ministry of Education and Science of the Russian Federation (GK No. 14.740.11.01419, 16.516.11.6049, 16.526.11.6003, and 16.120.11.4805-MK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Eletskii.

Additional information

Translated from Teoreticheskaya i Éksperimental’naya Khimiya, Vol. 47, No. 3, pp. 133–147, May-June, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eletskii, P.M., Yakovlev, V.A. & Parmon, V.N. Modern approaches to the production of carbon materials from vegetable biomass. Theor Exp Chem 47, 139–154 (2011). https://doi.org/10.1007/s11237-011-9195-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11237-011-9195-9

Key words

Navigation